如圖,已知拋物線y=ax2+bx+c與x軸交于A(k,0)(k<0)、B(3,0)兩點(diǎn),與y軸正半軸交于C點(diǎn),且tan∠CAO=3.
(1)求此拋物線的解析式(系數(shù)中可含字母k);
(2)設(shè)點(diǎn)D(0,t)在x軸下方,點(diǎn)E在拋物線上,若四邊形ADEC為平行四邊形,試求t與k的函數(shù)關(guān)系式;
(3)若題(2)中的平行四邊形ADEC為矩形,試求出D的坐標(biāo).

解:(1)∵tan∠CAO=3,A(k,0)
(k<0),又C點(diǎn)在y軸正半軸上
∴C(0,-3k)
∵A(k,o),B(3,0),C(0,-3k)都在拋物線上

∴解得:
∴拋物線為:y=-x2+(k+3)x-3k;

(2)∵DE∥AC,tan∠CAO=3
∴直線DE的斜率為:3,又過點(diǎn)D(0,t)
∴直線DE為:y=3x+t
∴聯(lián)解
可得交點(diǎn)為E(+t)
又∵要使ADEC為平行四邊形
∴DE=AC
∴(2+(+t)2=(k)2
∵k<0
∴t=-2k2-3k(k<0);

(3)∵要使平行四邊形ADEC為矩形
∴∠ADE=90°.
∴kAC•kAD=-1.
即:3×=-1,
∴k=3t.
又∵t=-2k2-3k
∴由
得t=-或t=0(舍)
∴D點(diǎn)的坐標(biāo)為(0,-).
分析:(1)根據(jù)A的坐標(biāo),可得出OA的長,根據(jù)∠CAO的正切值可求出OC的長,也就能求出C點(diǎn)的坐標(biāo).然后根據(jù)A、B、C三點(diǎn)的坐標(biāo),用待定系數(shù)法求出拋物線的解析式;
(2)要想使四邊形ADEC為平行四邊形,AC與DE必須平行且相等.根據(jù)∠CAO的正切值可得出直線AC的斜率.也就得出了直線DE的斜率,聯(lián)立直線DE和拋物線的解析式求出E點(diǎn)的坐標(biāo).由于AC=DE,可用E點(diǎn)的坐標(biāo)求出DE的長,進(jìn)而得出t,k的函數(shù)關(guān)系式;
(3)由于四邊形ADEC為矩形,那么AD⊥AC,即直線AC與直線AD的斜率的積為-1.由此可得出t與k的函數(shù)關(guān)系式.聯(lián)立(2)的關(guān)系式即可得出關(guān)于t,k的方程.可求出此時(shí)t,k的值.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、解直角三角形、平行四邊形的判定、矩形的判定和性質(zhì)等知識(shí)點(diǎn),(2)、(3)中利用好一次函數(shù)平行和垂直時(shí)斜率的關(guān)系是解題的關(guān)鍵.要牢記一次函數(shù)的斜率公式:k=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案