【題目】如圖,直線ABx軸交于點(diǎn)C,與y軸交于點(diǎn)B,點(diǎn)A(1,3),點(diǎn)B(0,2).連接AO

(1)求直線AB的解析式;

(2)求三角形AOC的面積.

【答案】(1) y=x+2;(2)3.

【解析】

1)設(shè)直線AB的解析式為y=kx+b,AB的坐標(biāo)代入求出k、b的值即可,

2)把y=0代入(1)所求出的解析式,便能求出C點(diǎn)坐標(biāo),從而利用三角形的面積公式求出三角形AOC的面積即可.

1)設(shè)直線AB的解析式y=kx+b,

把點(diǎn)A1,3),B02)代入解析式得,

解得k=1b=2,

k=1,b=2代入y=kx+by=x+2,

直線AB的解析式y=x+2

2)把 y=0代入y=x+2x+2=0,

解得x=﹣2,

點(diǎn)C的坐標(biāo)為(﹣2,0),

OC=2,

∵△AOC的底為2,AOC的高為點(diǎn)A的縱坐標(biāo)3,

SABC=2×3×=3,

故三角形AOC的面積為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的面線面線被這個(gè)平面圖形截得的線段叫做該圖形的面徑(例如圓的直徑就是它的面徑).已知等邊三角形的邊長為4,則它的面徑長x的取值范圍是 _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PB為O的切線,B為切點(diǎn),直線PO交于點(diǎn)E、F,過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交O于點(diǎn)A,延長AO與O交于點(diǎn)C,連接BC,AF.

(1)求證:直線PA為O的切線;

(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;

(3)若BC=6,tanF=,求cosACB的值和線段PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O00),點(diǎn)A50),點(diǎn)B03).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對應(yīng)點(diǎn)分別為DE,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB;

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分,且.

1)在圖1中,當(dāng)時(shí),求證:;

2)在圖2中,當(dāng)時(shí),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時(shí),車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時(shí)的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系如圖所示.

(1)求張師傅加油前油箱剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系式;

(2)求出a的值;

(3)求張師傅途中加油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商廈用8萬元購進(jìn)紀(jì)念運(yùn)動休閑衫,面市后供不應(yīng)求,商廈又用176萬元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但單價(jià)貴了8元,商廈銷售這種運(yùn)動休閑衫時(shí)每件定價(jià)都是100元,最后剩下的150件按八折銷售,很快售完.

1)商廈第一批和第二批各購進(jìn)休閑衫多少件?

2)請問在這兩筆生意中,商廈共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ABDC,連接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分線相交于點(diǎn)F,若∠ADC=110°,則∠F的度數(shù)為( 。

A. 115° B. 110° C. 105° D. 100°

查看答案和解析>>

同步練習(xí)冊答案