【題目】綜合與探究
如圖,在平面直角坐標系中,,點.
(1)在圖①中,點坐標為__________;
(2)如圖②,點在線段上,連接,作等腰直角三角形,,連接.證明:;
(3)在圖②的條件下,若三點共線,求的長;
(4)在軸上找一點,使面積為2.請直接寫出所有滿足條件的點的坐標.
【答案】(1)(1,3);
(2)答案見解析;
(3)OD=1
(4)F的坐標是或
【解析】
(1)過C點作軸,垂足為F,在證明了后可得到線段BM、CM的長,再求出線段OM的長,便可得點C的坐標;
(2)根據和等式的基本性質證明,再利用“SAS”定理證明后便可得到;
(3) 三點共線時,可推導出軸,從而有;
(4)根據點F在y軸上,所以中BF上的高總是OA=2,在此處只需要利用其面積為2和三角形的面積計算: ,分點F在點B的上方和下方兩種情況討論可得.
(1)過點C作軸,垂足為M,則
∴
∵
∴
∴
又∵
∴
∴,
∵點
∴,
∴
而點C在第一象限,所以點
(2)∵等腰直角三角形
∴
∵
∴
∴
∴
∴
(3)由(2) 可得
∵三點共線且三角形是等腰直角三角形
∴
∴
又
∴四邊形ODCM是矩形
∴
(4)∵點F在y軸上
∴的邊BF的高為OA=2
∵
即
∴
當點F在點B的上方時,其坐標為(3,0);
當點F在點B的下方時,其坐標為(-1,0).
故點F的坐標為(3,0)或(-1,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個單位面積為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜邊在x軸上,且斜邊長分別為2,4,6,……的等腰直角三角形.若△A1A2A3的頂點坐標分別為A1(2,0),A2(1,-1),A3(0,0),則依圖中所示規(guī)律,點A2019的橫坐標為( )
A. 1010B. C. 1008D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.
求:(1)坡頂A到地面PO的距離;
(2)古塔BC的高度(結果精確到1米).
(參考數(shù)據:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過小學的學習我們知道,分數(shù)可分為“真分數(shù)”和“假分數(shù)”,并且假分數(shù)都可化為帶分數(shù).類比分數(shù),對于分式也可以定義:對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如:
解決下列問題:
(1)分式是________分式(填“真”或“假”);
(2)假分式可化為帶分式_________的形式;請寫出你的推導過程;
(3)如果分式的值為整數(shù),那么的整數(shù)值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接“均衡教育大檢查”,縣委縣府對通往某偏遠學校的一段全長為1200 米的道路進行了改造,鋪設草油路面.鋪設400 米后,為了盡快完成道路改造,后來每天的工作效率比原計劃提高25%,結果共用13天完成道路改造任務.
(1)求原計劃每天鋪設路面多少米;
(2)若承包商原來每天支付工人工資為1500元,提高工作效率后每天支付給工人的工資增長了20%,完成整個工程后承包商共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形OABC的頂點A在x軸上,頂點B的坐標為(4,6),直線y=kx+3k將平行四邊形OABC分割成面積相等的兩部分,則k的值是( ).
A. B. C.- D.﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B兩個村莊的坐標分別為(2,2),(7,4),一輛汽車(看成點P)在軸上行駛.試確定下列情況下汽車(點P)的位置:
(1)求直線AB的解析式,且確定汽車行駛到什么點時到A、B兩村距離之差最大?
(2)汽車行駛到什么點時,到A、B兩村距離相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在平行四邊形紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,判斷四邊形AEE'D的形狀;
(2)如圖②,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D.
①求證:四邊形AFF'D是菱形;
②求四邊形AFF'D的兩條對角線的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com