【題目】如圖,∠ABC=90°,AD∥BC,以B為圓心,BC長為半徑畫弧,與射線AD相交于點(diǎn)E,連接BE,過點(diǎn)C作CF⊥BE,垂足為F.若AB=6,BC=10,則EF的長為___________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小孩將一只皮球從A處拋出去,它所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如果他的出手處A距地面的距離OA為1m,球路的最高點(diǎn)B(8,9),則這個(gè)二次函數(shù)的表達(dá)式為______,小孩將球拋出了約______米(精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是長為1個(gè)單位的正方形.若學(xué)校位置的坐標(biāo)為A(1,2),解答以下問題:
(1)請(qǐng)?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);
(2)若體育館位置的坐標(biāo)為C(-3,3),請(qǐng)?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD和CD分別平分△ABC的內(nèi)角∠EBA和外角∠ECA,BD交AC于F,連接AD.
(1)求證:∠BDC=∠BAC;
(2)若AB=AC,請(qǐng)判斷△ABD的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,若AF=BF,求∠EBA的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,把繞著它的斜邊中點(diǎn)逆時(shí)針旋轉(zhuǎn)至的位置,交于點(diǎn).與重疊部分的面積為 .
A. 8 B. 9 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,CD與BE、AE分別交于點(diǎn)P,M.對(duì)于下列結(jié)論:①△BAE∽△CAD;②MPMD=MAME;③2CB2=CPCM.其中正確的是( 。
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知函數(shù)y= (x>0)圖象上一點(diǎn)P,PA⊥x軸于點(diǎn)A(a,0),點(diǎn)B坐標(biāo)為(0,b)(b>0).動(dòng)點(diǎn)M是y軸正半軸上點(diǎn)B上方的點(diǎn).動(dòng)點(diǎn)N在射線AP上,過點(diǎn)B作AB的垂線,交射線AP于點(diǎn)D.交直線MN于點(diǎn)Q.連接AQ.取AQ的中點(diǎn)C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點(diǎn)Q在線段BD上時(shí),若四邊形BQNC是菱形,面積為2 ,求此時(shí)P點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在平面直角坐標(biāo)系中是否存在點(diǎn)S,使得以點(diǎn)D、Q、N、S為項(xiàng)點(diǎn)的四邊形為平行四邊形?如果存在,請(qǐng)直接寫出所有的點(diǎn)S的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字與例題,并解答。
將一個(gè)多項(xiàng)式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法。例如:以下式子的分解因式的方法叉稱為分組分解法。
(1)試用“分組分解法”分解因式:
(2)已知四個(gè)實(shí)數(shù)a,b,c,d滿足。并且,,,同時(shí)成立。
①當(dāng)k=1時(shí),求a+c的值;
②當(dāng)k≠0時(shí),用含a的代數(shù)式分別表示b、c、d。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com