【題目】如圖,O是直線AB上的一點(diǎn),OC為任一射線,OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD的補(bǔ)角和∠BOE的補(bǔ)角;
(2)若∠BOC=68°,求∠COD和∠EOC的度數(shù);
(3)∠COD與∠EOC具有怎樣的數(shù)量關(guān)系?
【答案】(1)∠AOD的補(bǔ)角為∠BOD,∠COD,∠BOE的補(bǔ)角為∠EOC,∠AOE;(2)∠COD=34°,∠EOC=56°;(3)∠COD與∠EOC互余.
【解析】
(1)根據(jù)互為補(bǔ)角的和等于180°找出即可;
(2)根據(jù)角平分線的定義求出∠COD的度數(shù)即可,先求出∠AOC的度數(shù),再根據(jù)角平分線的定義解答;
(3)根據(jù)角平分線的定義表示出∠COD與∠EOC,然后整理即可得解.
(1)∠AOD的補(bǔ)角為∠BOD,∠COD,∠BOE的補(bǔ)角為∠AOE,∠COE;
(2)∵OD平分∠BOC,∠BOC=68°,∴∠COD=∠BOC=×68°=34°,
∵∠BOC=68°,∴∠AOC=180°﹣∠BOC=180°﹣68°=112°,
∵OE平分∠AOC,∴∠EOC=∠AOC=×112°=56°;
(3)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC,∠EOC=∠AOC,∴∠COD+∠EOC=(∠BOC+∠AOC)=×180°=90°,∴∠COD與∠EOC互余.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+4的圖象經(jīng)過(guò)點(diǎn)(-3,-2).
(1)求這個(gè)函數(shù)的解析式;
(2)畫(huà)出該函數(shù)的圖象;
(3)判斷點(diǎn)(3,5)是否在此函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,過(guò)點(diǎn)D作DP∥OC,且DP=OC,連接CP.
(1)判斷四邊形CODP的形狀并說(shuō)明理由;
(2)如圖②,如果題目中的矩形變?yōu)榱庑,判斷四邊?/span>CODP的形狀并說(shuō)明理由;
(3)如圖③,如果題目中的矩形變?yōu)檎叫危袛嗨倪呅?/span>CODP的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)長(zhǎng)方形,若它的長(zhǎng)增加 9cm,則變?yōu)閷挼膬杀;若它的寬增?/span> 5cm,則只比長(zhǎng)少 1cm.
(1) 這個(gè)長(zhǎng)方形的長(zhǎng)和寬各是多少 cm?
(2) 將這個(gè)長(zhǎng)方形的長(zhǎng)減少 a cm,寬增加 b cm,使它變成一個(gè)正方形,若 a,b均為正整數(shù),所得正方形的周長(zhǎng)不大于原長(zhǎng)方形的周長(zhǎng),求這個(gè)正方形的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)圖并計(jì)算:已知線段AB=2 cm,延長(zhǎng)線段AB至點(diǎn)C,使得2BC=AB,再反向延長(zhǎng)AC至點(diǎn)D,使得AD=AC.
(1)準(zhǔn)確地畫(huà)出圖形,并標(biāo)出相應(yīng)的字母;
(2)線段DC的中點(diǎn)是哪個(gè)?線段AB的長(zhǎng)是線段DC長(zhǎng)的幾分之幾?
(3)求出線段BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知∠AOB=80°,OC是∠AOB內(nèi)的一條射線,OD,OE分別平分∠BOC和∠COA.
(1)求∠DOE的度數(shù);
(2)當(dāng)射線OC繞點(diǎn)O旋轉(zhuǎn)到OB的左側(cè)時(shí)如圖②(或旋轉(zhuǎn)到OA的右側(cè)時(shí)如圖③),OD,OE仍是∠BOC和∠COA的平分線,此時(shí)∠DOE的大小是否和(1)中的答案相同?若相同,請(qǐng)選取一種情況寫(xiě)出你的求解過(guò)程;若不相同,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
對(duì)于線段的垂直平分線我們有如下結(jié)論:到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.即如圖①,若PA=PB,則點(diǎn)P在線段AB的垂直平分線上.
請(qǐng)根據(jù)閱讀材料,解決下列問(wèn)題:
如圖②,直線CD是等邊△ABC的對(duì)稱軸,點(diǎn)D在AB上,點(diǎn)E是線段CD上的一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時(shí)針旋轉(zhuǎn)后與△BCF重合.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)了 (度);
(2)當(dāng)點(diǎn)E從點(diǎn)D向點(diǎn)C移動(dòng)時(shí),連結(jié)AF,設(shè)AF與CD交于點(diǎn)P,在圖②中將圖形補(bǔ)全,并探究∠APC的大小是否保持不變?若不變,請(qǐng)求出∠APC的度數(shù);若改變,請(qǐng)說(shuō)出變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式成立的是( )
A. (-a-b)2+(a-b)2=-4ab B. (-a-b)2+(a-b)2=a2+b2
C. (-a-b)(a-b)=(a-b)2 D. (-a-b)(a-b)=b2-a2
【答案】D
【解析】解析:∵(-a-b)2+(a-b)2=(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,
∴選項(xiàng)A與選項(xiàng)B錯(cuò)誤;
∵(-a-b)(a-b)=-(a+b)(a-b)=-(a2-b2)=b2-a2,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.
故選D.
【題型】單選題
【結(jié)束】
8
【題目】若x=1,y=,則x2+4xy+4y2的值是( )
A. 2 B. 4 C. 32 D. 12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com