如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠BAC=30º,EF⊥AB,垂足為F,連結(jié)DF.
(1)求證:AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
【解析】由等邊△ABE和Rt△ABC,求得Rt△ABC∽R(shí)t△EAF,即可得AC=EF,由等邊三角形的性質(zhì)得出∠BDF=30°,從而證得△DBF≌△EFA,則AE=DF,再由FE=AB,得出四邊形ADFE為平行四邊形
(1)∵在等邊△ABE中,EF⊥AB,
∴AF= AE= AB,
又∵Rt△ABC,∠BAC=30º,
∴BC=AB,
∴BC=AF
∴Rt△ABC∽R(shí)t△EAF(AAS)
即AC=EF
(2)因?yàn)镋F⊥AB,∴,∠AFE=90
∵△ACD是等邊三角形,∴∠DAC=60,∴∠DAB=90
∵∠AFE=∠DAB,∴AD//EF
∵∠BAC=30,∴CB=AB
∵EF⊥AB,∴AF=AB=CB
∵AF=CB.AD=AC,∠DAB=∠ACB=90
∴Rt△ABC∽R(shí)t△DFA
∴∠ADF=∠CAB=30,
∵∠DAB+∠BAE=90+60=150
∴∠ADF+∠DAE=180
∴AE//DF
∴四邊形ADFE是平行四邊形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、①②③ | B、①④⑤ | C、①③⑤ | D、①③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com