【題目】如圖,在平面直角坐標(biāo)系中,直線l平行x軸,交y軸于點(diǎn)A,第一象限內(nèi)的點(diǎn)B在l上,連結(jié)OB,動(dòng)點(diǎn)P滿足∠APQ=90°,PQ交x軸于點(diǎn)C.
(1)當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),若點(diǎn)B的坐標(biāo)是(2,1),求PA的長(zhǎng).
(2)當(dāng)動(dòng)點(diǎn)P在線段OB的延長(zhǎng)線上時(shí),若點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,求PA:PC的值.
(3)當(dāng)動(dòng)點(diǎn)P在直線OB上時(shí),點(diǎn)D是直線OB與直線CA的交點(diǎn),點(diǎn)E是直線CP與y軸的交點(diǎn),若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
【答案】(1)PA的長(zhǎng)為2;(2)PA:PC的值為1:1;(3)PA:PC的值為或.
【解析】試題分析:(1)B點(diǎn)到y軸的距離是2.(2)過(guò)點(diǎn)P作PM⊥x軸,垂足為M,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,證明△ANP≌△CMP,可得PA:PC的值為1:1.(3)分類討論,
若點(diǎn)P在線段OB的延長(zhǎng)線上,過(guò)點(diǎn)P作PM⊥x軸,垂足為M,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,PM與直線AC的交點(diǎn)為F,△ANP∽△CMP,證明四邊形PMON是矩形,求出PA:PC值,若點(diǎn)P在線段OB的反向延長(zhǎng)線上,,過(guò)點(diǎn)P作PM⊥x軸,垂足為M,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,PM與直線AC的交點(diǎn)為F,同理求出比值.
試題解析:
(1)∵點(diǎn)P與點(diǎn)B重合,點(diǎn)B的坐標(biāo)是(2,1),
∴點(diǎn)P的坐標(biāo)是(2,1).
∴PA的長(zhǎng)為2.
(2)如答圖1,過(guò)點(diǎn)P作PM⊥x軸,垂足為M,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,
∵點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,∴OA=AB.
∵∠OAB=90°,∴∠AOB=∠ABO=45°.
∵∠AOC=90°,∴∠POC=45°.
∵PM⊥x軸,PN⊥y軸,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.
∵∠APC=90°.∴∠APN=90°∠APM=∠CPM.
在△ANP和△CMP中,∵∠APN=∠CPM,PN=PM,∠ANP=∠CMP,
∴△ANP≌△CMP.∴PA=PC.∴PA:PC的值為1:1.
(3)①若點(diǎn)P在線段OB的延長(zhǎng)線上,如答圖2,過(guò)點(diǎn)P作PM⊥x軸,垂足為M,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,PM與直線AC的交點(diǎn)為F.
∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴ .
∵∠ACE=∠AEC,∴AC=AE.
∵AP⊥PC,∴EP=CP.
∵PM∥y軸,∴AF=CF,OM=CM.∴FM= OA.
設(shè)OA=x,∵PF∥OA,∴△PDF∽△ODA.∴ .
∵PD=2OD,∴PF=2OA=2x,FM= x.∴PM= x.
∵∠APC=90°,AF=CF,∴AC=2PF=4x.
∵∠AOC=90°,∴OC= x.
∵∠PNO=∠NOM=∠OMP=90°,∴四邊形PMON是矩形.∴PN=OM= x.
∴PA:PC=PN:PM= x: x= .
②若點(diǎn)P在線段OB的反向延長(zhǎng)線上,如答圖3,過(guò)點(diǎn)P作PM⊥x軸,垂足為M,過(guò)點(diǎn)P作PN⊥y軸,垂足為N,PM與直線AC的交點(diǎn)為F.
同理可得:PM= x,CA=2PF=4x,OC= x.
∴PN=OM= OC= x.
∴PA:PC=PN:PM= x: x= .
綜上所述:PA:PC的值為 或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元。廠方在開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶都按定價(jià)的90%付款。現(xiàn)某客戶要到該服裝廠購(gòu)買西裝20套,領(lǐng)帶x條():
(1)若該客戶按方案①購(gòu)買,需付款______________元(用含x的代數(shù)式表示);若該客戶按方案②購(gòu)買,需付款________________元(用含x的代數(shù)式表示);
(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?
(3)當(dāng)x=30時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方法。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班一次數(shù)學(xué)檢測(cè)中,共出了20道題,總分為100分,現(xiàn)從中抽出5份試卷進(jìn)行分析.如圖表所示:
(1)某同學(xué)得了70分,他答對(duì)了試卷多少道題?
(2)有一同學(xué)H他得了76分,另一同學(xué)G說(shuō)他得了72分,誰(shuí)說(shuō)的對(duì)了?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個(gè)不完整的統(tǒng)計(jì)圖(如圖).
請(qǐng)根據(jù)上面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下4個(gè)問題:
(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計(jì)圖中的缺項(xiàng).
(3)在扇形統(tǒng)計(jì)圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.
(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC.
(1)若∠BOC=60°,求∠EOF的度數(shù);
(2)若∠AOC=x°(x>90),此時(shí)能否求出∠EOF的大小,若能,請(qǐng)求出它的數(shù)值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可繞點(diǎn)B旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過(guò)程中直線CC′和AA′相交于點(diǎn)D.
(1)如圖1所示,當(dāng)點(diǎn)C′在AB邊上時(shí),判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將Rt△A′BC′由圖1的位置旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)將Rt△A′BC′由圖1的位置按順時(shí)針方向旋轉(zhuǎn)α角(0°≤α≤120°),當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),請(qǐng)直接寫出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年3月,某炒房團(tuán)以不多于2224萬(wàn)元不少于2152萬(wàn)元的資金分別從A城、B城買入小戶型二手房(80平方米/套)共4000平方米.其中A城、B城的購(gòu)入價(jià)格分別為4000元/平方米、7000元/平方米.自住建部今年5月約談成都市政府負(fù)責(zé)同志后,成都市進(jìn)一步加大了調(diào)控政策.某炒房團(tuán)為拋售A城的二手房,決定從6月起每平方米降價(jià)1000元.如果賣出相同平方米的房子,那么5月的銷售額為640萬(wàn)元,6月的銷售額為560萬(wàn)元.
(1)A城今年6月每平方米的售價(jià)為多少元?
(2)請(qǐng)問去年3月有幾種購(gòu)入方案?
(3)若去年三月所購(gòu)房產(chǎn)全部沒有賣出,炒房團(tuán)計(jì)劃在7月執(zhí)行銷售方案:B城售價(jià)為1.05萬(wàn)元/平方米,并且每售出一套返還該購(gòu)房者a元;A城按今年6月的價(jià)格進(jìn)行銷售。要使(2)中的所有方案利潤(rùn)相同,求出a應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在公路 MN 兩側(cè)分別有 A, A......A,七個(gè)工廠,各工廠與公路 MN(圖中粗線)之間有小公路連接.現(xiàn)在需要在公路 MN 上設(shè)置一個(gè)車站,選擇站址的標(biāo)準(zhǔn)是“使各工廠到車站的距離之和越小越好”.則下面結(jié)論中正確的是( ).
①車站的位置設(shè)在 C 點(diǎn)好于 B 點(diǎn);
②車站的位置設(shè)在 B 點(diǎn)與 C 點(diǎn)之問公路上任何一點(diǎn)效果一樣;
③車站位置的設(shè)置與各段小公路的長(zhǎng)度無(wú)關(guān).
A.①B.②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解八年級(jí)學(xué)生的視力情況,對(duì)八年級(jí)的學(xué)生進(jìn)行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進(jìn)行統(tǒng)計(jì)整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)在頻數(shù)分布表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com