【題目】某校為了解八年級學生的視力情況,對八年級的學生進行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進行統(tǒng)計整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.

視力

頻數(shù)(人)

頻率

4.0≤x<4.3

20

0.1

4.3≤x<4.6

40

0.2

4.6≤x<4.9

70

0.35

4.9≤x<5.2

a

0.3

5.2≤x<5.5

10

b

(1)在頻數(shù)分布表中,a=   ,b=   ;

(2)將頻數(shù)分布直方圖補充完整;

(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?

【答案】(1)60,0.05 (2)見解析(3)70%

【解析】

(1)依據(jù)總數(shù)=頻數(shù)÷頻率可求得總?cè)藬?shù),然后依據(jù)頻數(shù)=總數(shù)×頻率,頻率=頻數(shù)÷總數(shù)求解即可;

(2)依據(jù)(1)中結(jié)果補全統(tǒng)計圖即可;

(3)依據(jù)百分比=頻數(shù)÷總數(shù)求解即可.

(1)60,0.05

(2)頻數(shù)分布直方圖如圖所示,

(3)視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是×100%=70%.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l平行x軸,交y軸于點A,第一象限內(nèi)的點B在l上,連結(jié)OB,動點P滿足∠APQ=90°,PQ交x軸于點C.

(1)當動點P與點B重合時,若點B的坐標是(2,1),求PA的長.

(2)當動點P在線段OB的延長線上時,若點A的縱坐標與點B的橫坐標相等,求PA:PC的值.

(3)當動點P在直線OB上時,點D是直線OB與直線CA的交點,點E是直線CP與y軸的交點,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為24cm的等邊三角形ABC中,點P從點A開始沿AB邊向點B以每秒鐘2cm的速度移動,點Q從點B開始沿BC邊向點C以每秒鐘4cm的速度移動.若P、Q分別從A、B同時出發(fā),其中任意一點到達目的地后,兩點同時停止運動,求:

1)經(jīng)過6秒后,BP=    cm,BQ=    cm;

2)經(jīng)過幾秒△BPQ的面積等于

3)經(jīng)過幾秒后,△BPQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點E,F分別在ABAD上,若CE3,且∠ECF45°,則CF的長為

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.

(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且A點坐標為(-6,0).

(1)求此二次函數(shù)的表達式;

(2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

【答案】(1)y=-x2x+8(2)

【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點坐標,把B、C兩點坐標代入二次函數(shù)的解析式就可解答;

(2)過點FFGAB,垂足為G,由EFAC,得BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CABFG,根據(jù)S=SBCE-SBFE,求Sm之間的函數(shù)關(guān)系式.

解:(1)解方程x2-10x+16=0得x12,x28

∴B2,0)、C0,8

∴所求二次函數(shù)的表達式為y=-x2x8

(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,

∵OA6,OC8, ∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

過點F作FG⊥AB,垂足為G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

點睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.

型】解答
結(jié)束】
23

【題目】如圖(1),在平面直角坐標系中,點A(0,﹣6),點B(6,0).RtCDE中,CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點C與點A重合.RtCDE沿y軸正方向平行移動,當點C運動到點O時停止運動.解答下列問題:

(1)如圖(2),當RtCDE運動到點D與點O重合時,設(shè)CE交AB于點M,求BME的度數(shù).

(2)如圖(3),在RtCDE的運動過程中,當CE經(jīng)過點B時,求BC的長.

(3)在RtCDE的運動過程中,設(shè)AC=h,OAB與CDE的重疊部分的面積為S,請寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,的邊上的中線.

1)①用尺規(guī)完成作圖:延長到點,使,連接;

,求的取值范圍;

2)如圖2,當時,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)的水上樂園有一批人座的自劃船,每艘可供位游客乘坐游湖,因景區(qū)加大宣傳,預計今年游客將會增加.水上樂園的工作人員在去年日一天出租的艘次人自劃船中隨機抽取了艘,對其中抽取的每艘船的乘坐人數(shù)進行統(tǒng)計,并制成如下統(tǒng)計圖.

1)求扇形統(tǒng)計圖中, “乘坐1人”所對應(yīng)的圓心角度數(shù);

2)估計去年日這天出租的艘次人自劃船平均每艘船的乘坐人數(shù);

3)據(jù)旅游局預報今年日這天該景區(qū)可能將增加游客300人,請你為景區(qū)預計這天需安排多少艘4人座的自劃船才能滿足需求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

同步練習冊答案