【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q.若PQ=AE,則AP等于cm.
【答案】1或2
【解析】解:根據(jù)題意畫出圖形,過P作PN⊥BC,交BC于點(diǎn)N, ∵四邊形ABCD為正方形,
∴AD=DC=PN,
在Rt△ADE中,∠DAE=30°,AD=3cm,
∴tan30°= ,即DE= cm,
根據(jù)勾股定理得:AE= =2 cm,
∵M(jìn)為AE的中點(diǎn),
∴AM= AE= cm,
在Rt△ADE和Rt△PNQ中,
,
∴Rt△ADE≌Rt△PNQ(HL),
∴DE=NQ,∠DAE=∠NPQ=30°,
∵PN∥DC,
∴∠PFA=∠DEA=60°,
∴∠PMF=90°,即PM⊥AF,
在Rt△AMP中,∠MAP=30°,cos30°= ,
∴AP= = =2cm;
由對(duì)稱性得到AP′=DP=AD﹣AP=3﹣2=1cm,
綜上,AP等于1cm或2cm.
所以答案是:1或2.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx﹣75.其圖象如圖所示.
(1)銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤(rùn)最大?最大利潤(rùn)為多少元?
(2)銷售單價(jià)在什么范圍時(shí),該種商品每天的銷售利潤(rùn)不低于16元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a>0,c<0)交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,設(shè)過點(diǎn)A,B,C三點(diǎn)的圓與y軸的另一個(gè)交點(diǎn)為D.
(1)如圖1,已知點(diǎn)A,B,C的坐標(biāo)分別為(﹣2,0),(8,0),(0,﹣4);
①求此拋物線的表達(dá)式與點(diǎn)D的坐標(biāo);
②若點(diǎn)M為拋物線上的一動(dòng)點(diǎn),且位于第四象限,求△BDM面積的最大值;
(2)如圖2,若a=1,求證:無論b,c取何值,點(diǎn)D均為定點(diǎn),求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長(zhǎng)為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證: = .(這個(gè)比值 叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個(gè)等腰三角形就叫做黃金三角形.請(qǐng)你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個(gè)黃金三角形ABC. (注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對(duì)作圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F(xiàn)分別在BC、AB上,且DE∥AB,EF∥AC.
(1)求證:BE=AF;
(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=110°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.
(1)求∠DAF的度數(shù);
(2)如果BC=10cm,求△DAF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的頂點(diǎn)坐標(biāo)為A(—5,1),B(—1,1), C(—1,6),D(—5,4),請(qǐng)作出四邊形ABCD關(guān)于x軸及y軸的對(duì)稱圖形,并寫出坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F(xiàn)分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com