【題目】已知:如圖,∠B=∠C,BD=CE,AB=DC,
①求證:△ADE為等腰三角形.
②若∠B=60°,求證:△ADE為等邊三角形.
【答案】①見解析;②見解析.
【解析】
①先根據(jù)∠B=∠C,BD=CE,AB=DC,判定△ABD≌DCE,得出DA=DE,進而得到△ADE為等腰三角形;
②根據(jù)△ABD≌△DCE,得出∠BAD=∠CDE,再根據(jù)三角形內(nèi)角和定理和平角的定義,得到∠ADE=60°,最后可判定等腰△ADE為等邊三角形.
①在△ABD和△DCE中,,
∴△ABD≌△DCE(SAS),
∴DA=DE,
即△ADE為等腰三角形
②∵△ABD≌△DCE,
∴∠BAD=∠CDE,
∵∠B=60°,
∴∠BAD+∠ADB=120°,
∴∠CDE+∠ADB=120°,
∴∠ADE=60°,
又∵△ADE為等腰三角形,
∴△ADE為等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象與函數(shù)y=x-的圖象如圖所示,則下列結(jié)論:①ab>0;②c>-;③a+b+c<-;④方程ax2+(b-1)x+c+=0有兩個不相等的實數(shù)根.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在和中,為邊上一點,平分,,.
(1)求證:
(2)如圖(2),若,連接交于,為邊上一點,滿足,連接交于. ①求的度數(shù);
②若平分,試說明:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標(biāo);
(2)△ABC的面積是 .
(3)點P(a+1,b-1)與點C關(guān)于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商人將進貨單價為元的某種商品按元銷售時,每天可賣出件.現(xiàn)在他采用提高售價的辦法增加利潤,已知這種商品銷售單價每漲元,銷售量就減少件,那么他將售價每個定為________元時,才能使每天所賺的利潤最大,每天最大利潤是________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,圖形的運動只改變圖形的位置,不改變圖形的形狀、大小,運動前后的兩個圖形全等,翻折就是這樣.如圖1,將△ABC沿AD翻折,使點C落在AB邊上的點C'處,則△ADC≌△ADC'.
嘗試解決:(1)如圖2,△ABC中,∠C=90°,AC=6,BC=8,將△ABC沿AD翻折,使點C落在AB邊上的點C'處,求CD的長.
(2)如圖3,在長方形ABCD中,AB=8,AD=6,點P在邊AD上,連接BP,將△ABP沿BP翻折,使點A落在點E處,PE、BE分別與CD交于點G、F,且DG=EG.
①求證:PE=DF;
②求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在中,是高,是角平分線,它們相交于點,.求和的度數(shù).
(2)一個多邊形的內(nèi)角和是外角和的3倍,它是幾邊形?若這個多邊形的各個內(nèi)角都相等,求這個多邊形的每個內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)在住宅建設(shè)時留下一塊1798平方米的空地,準(zhǔn)備建一個矩形的露天游泳池,設(shè)計如圖所示,游泳池的長是寬的2倍,在游泳池的前側(cè)留一塊5米寬的空地,其它三側(cè)各保留2米寬的道路及1米寬的綠化帶
(1)請你計算出游泳池的長和寬
(2)若游泳池深3米,現(xiàn)要把池底和池壁(共5個面)都貼上瓷磚,請你計算要貼瓷磚的總面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛我永州”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com