如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)E坐標(biāo)為(4,0),頂點(diǎn)G坐標(biāo)為(0,2).將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM與GF交于點(diǎn)A.
(1)判斷△OGA和△OMN是否相似,并說明理由;
(2)求過點(diǎn)A的反比例函數(shù)解析式;
(3)設(shè)(2)中的反比例函數(shù)圖象交EF于點(diǎn)B,求直線AB的解析式;
(4)請(qǐng)?zhí)剿鳎呵蟪龅姆幢壤瘮?shù)的圖象,是否經(jīng)過矩形OEFG的對(duì)稱中心,并說明理由.

【答案】分析:(1)由已知,得∠OGA=∠M=90°,∠GOA=∠MON,易得△OGA∽△OMN.
(2)根據(jù)(1)的結(jié)論,可得AG的值,即A的坐標(biāo),設(shè)反比例函數(shù)y=,把A(1,2)代入,得k=2,即y=
(3)易得B的坐標(biāo),設(shè)y=mx+n,把A(1,2),B(4,)代入可得方程組,解可得mn的值,代入可得直線AB的解析式;
(4)設(shè)矩形OEFG的對(duì)稱中心為Q,易得點(diǎn)Q坐標(biāo)為(2,1),將其代入解析式,即可判斷出答案.
解答:解:(1)△OGA∽△OMN.(1分)
由已知,得∠OGA=∠M=90°,∠GOA=∠MON,
∴△OGA∽△OMN.(2分)

(2)由(1)得
,AG=1,
∴A(1,2).(3分)
設(shè)反比例函數(shù)y=,把A(1,2)代入,得k=2,即y=.(4分)

(3)∵點(diǎn)B的橫坐標(biāo)為4,把x=4代入y=中得,y=,即B(4,).(5分)
設(shè)y=mx+n,把A(1,2),B(4,)代入,得解得
∴y=-x+.(8分)


(4)設(shè)矩形OEFG的對(duì)稱中心為Q,則點(diǎn)Q坐標(biāo)為(2,1).
把x=2代入y=,得y=1.
∴反比例函數(shù)的圖象經(jīng)過矩形OEFG的對(duì)稱中心.(10分)
點(diǎn)評(píng):綜合考查三角形相似的判定,反比例函數(shù)直線關(guān)系式的求法,及中心對(duì)稱的有關(guān)知識(shí).此題綜合性強(qiáng),有一定的難度,有利于培養(yǎng)同學(xué)們勇于探索的良好學(xué)習(xí)習(xí)慣.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案