【題目】一個袋中裝有除顏色外都相同的紅球和黃球共10個,其中紅球6個.從袋中任意摸出1球.
(1)“摸出的球是白球”是什么事件?它的概率是多少?
(2)“摸出的球是黃球”是什么事件?它的概率是多少?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為下底BC上一點(不與B、C重合),連結(jié)AP,過點P作PE交CD于E,使得∠APE=∠B
(1)求證:△ABP∽△PCE
(2)在底邊BC上是否存在一點P,使DE:EC=5:3?如果存在,求BP的長;如果不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山上有一座高塔,山腳下有一圓柱形建筑物平臺,高塔及山的剖面與圓柱形建筑物平臺的剖面ABCD在同一平面上,在點A處測得塔頂H的仰角為35°,在點D處測得塔頂H的仰角為45°,又測得圓柱形建筑物的上底面直徑AD為6m,高CD為2.8m,則塔頂端H到地面的高度HG為( )
(參考數(shù)據(jù):,,,)
A.10.8mB.14mC.16.8mD.29.8m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.5米的正方形.點E、F分別在邊和上,、和四邊形均由單一材料制成,制成、和四邊形的三種材料的價格依次為每平方米30元、20元、10元.若將此種地磚按圖(2)所示的形式鋪設(shè),且中間的陰影部分組成正方形.設(shè).
(1)________,_________.(用含有x的代數(shù)式表示).
(2)已知燒制該種地磚平均每塊需加工費0.35元,若要長大于0.1米,且每塊地磚的成本價為4元(成本價=材料費用+加工費用),則長應(yīng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+3的對稱軸為直線x=1.若關(guān)于x的一元二次方程x2+bx+3﹣t=0(t為實數(shù))在﹣2<x<3的范圍內(nèi)有實數(shù)根,則t的取值范圍是( 。
A.12<t≤3B.12<t<4C.12<t≤4D.12<t<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E是CD的中點,AF平分∠BAE交BC于點F,將△ADE繞點A順時針旋轉(zhuǎn)90°得△ABG,則CF的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com