【題目】下列試驗(yàn)中,概率最大的是( )
A. 拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面的概率
B. 拋擲一枚質(zhì)地均勻的正方體骰子(六個面分別刻有數(shù)字1到6),擲出的點(diǎn)數(shù)為奇數(shù)的概率
C. 在一副洗勻的撲克(背面朝上)中任取一張,恰好為方塊的概率
D. 三張同樣的紙片,分別寫有數(shù)字2、3、4,洗勻后背面向上,任取一張恰好為偶數(shù)的概率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y=與直線y=ax+b相交于點(diǎn)A(1,5),B(m,-2).
⑴分別求雙曲線、直線的解析式;
⑵直接寫出不等式ax+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:整式乘法與因式分解是方向相反的變形
由(x+p)(x+q)=x2+(p+q)x+pq得x2+(p+q)x+pq=(x+p)(x+q)
利用這個式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式,
例如:將式子x2+3x+2分解因式.
分析:這個式子的常數(shù)項(xiàng)2=1×2一次項(xiàng)系數(shù)3=1+2
所以x2+3x+2=x2+(1+2)x=1×2
解:x2+3x+2=(x+)(x+2)
請仿照上面的方法,解答下列問題:
(1)分解因式:x2+6x-27=__________________;
(2)若x2+px+8可分解為兩個一次因式的積,則整數(shù)的所有可能值是_________________;
(3)利用因式分解法解方程:x2-4x-12=0..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義一種新運(yùn)算:“※”,使得a※b=4ab
(1)求4※7的值;
(2)求x※x+2※x﹣2※4=0中x的值;
(3)不論x是什么數(shù),總有a※x=x,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖是一個組合幾何體,右邊是它的兩種視圖,在右邊橫線上填寫出兩種視圖的名稱;
視圖 視圖
(2)根據(jù)兩種視圖中尺寸(單位:cm),計(jì)算這個組合幾何體的表面積.(π取3.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的試驗(yàn)時,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C. 暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D. 擲一個質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn)、,且與直線交于點(diǎn).
(1)若是線段上的點(diǎn),且的面積為,求直線的函數(shù)表達(dá)式.
()在()的條件下,設(shè)是射線上的點(diǎn),在平面內(nèi)是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y1=-x與反比例函數(shù)y2=的圖象經(jīng)過A(-2,1)點(diǎn),求:
(1)反比例函數(shù)的解析式.
(2)正比例與反比例函數(shù)另一個交點(diǎn)B的坐標(biāo).
(3)當(dāng)x在什么范圍,y1=y2,當(dāng)x在什么范圍,y1<y2,當(dāng)x在什么范圍,y1>y2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com