直線經(jīng)過A(0,2)和B(3,0)兩點(diǎn),那么這個(gè)一次函數(shù)關(guān)系式是(     )
A.B.C.D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、【附加題】已知二次函數(shù)y=x2+2(m+1)x-m+1.
(1)隨著m的變化,該二次函數(shù)圖象的頂點(diǎn)P是否都在某條拋物線上?如果是,請(qǐng)求出該拋物線的函數(shù)表達(dá)式;如果不是,請(qǐng)說明理由.
(2)如果直線y=x+1經(jīng)過二次函數(shù)y=x2+2(m+1)x-m+1圖象的頂點(diǎn)P,求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,在平面直角坐標(biāo)系中,直線l經(jīng)過原點(diǎn)O,且與x軸正半軸的夾角為30°,點(diǎn)M在x軸上,⊙M半徑為2,⊙M與直線l相交于A,B兩點(diǎn),若△ABM為等腰直角三角形,則點(diǎn)M的坐標(biāo)為
(2
2
,0)或(-2
2
,0)
(2
2
,0)或(-2
2
,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)已知直線l經(jīng)過點(diǎn)A(1,0)且與直線y=x垂直,則直線l的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=-x-3經(jīng)過點(diǎn)C(1,m),并與坐標(biāo)軸交于A、B兩點(diǎn),過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的負(fù)半軸交于D點(diǎn),
(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)拋物線y=x2+bx+c的對(duì)稱軸為直線MN,直線MN與x軸相交于點(diǎn)F,直線MN上有一動(dòng)點(diǎn)P,過P作直線PE⊥AB,垂足為E,直線PE與x軸相交于點(diǎn)H
①當(dāng)P點(diǎn)在直線MN上移動(dòng)時(shí),是否存在這樣的P點(diǎn),使以A、P、H為頂點(diǎn)的三角形與△FBC相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
②若⊙I始終過A、P、E三點(diǎn),當(dāng)P點(diǎn)在MN上運(yùn)動(dòng)時(shí),圓心I在
C
C
上運(yùn)動(dòng).(先作選擇,再說明理由) 
A.一個(gè)圓   B.一個(gè)反比例函數(shù)圖象  C.一條直線  D.一條拋物線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠ACB=2∠B,∠BAC的平分線AO交BC于點(diǎn)D,點(diǎn)H為AO上一動(dòng)點(diǎn),過點(diǎn)H作直線l⊥AO于H,分別交直線AB、AC、BC于點(diǎn)N、E、M.
(1)當(dāng)直線l經(jīng)過點(diǎn)C時(shí)(如圖2),證明:BN=CD;
(2)當(dāng)M是BC中點(diǎn)時(shí),寫出CE和CD之間的等量關(guān)系,并加以證明;
(3)請(qǐng)直接寫出BN、CE、CD之間的等量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案