【題目】已知:一組鄰邊分別為和的平行四邊形,和的平分線分別交所在直線于點,,則線段的長為________.
【答案】或
【解析】
利用當AB=10cm,AD=6cm,由于平行四邊形的兩組對邊互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,則DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF長;同理可得:當AD=10cm,AB=6cm時,可以求出EF長
解:如圖1,當AB=10cm,AD=6cm
∵AE平分∠BAD
∴∠BAE=∠DAE,
又∵AD∥CB
∴∠EAB=∠DEA,
∴∠DAE=∠AED,則AD=DE=6cm
同理可得:CF=CB=6cm
∵EF=DE+CF-DC=6+6-10=2(cm)
如圖2,當AD=10cm,AB=6cm,
∵AE平分∠BAD,
∴∠BAE=∠DAE
又∵AD∥CB
∴∠EAB=∠DEA,
∴∠DAE=∠AED則AD=DE=10cm
同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)
故答案為:2或14.
圖1 圖2
科目:初中數學 來源: 題型:
【題目】某同學報名參加學校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠,跳高(分別用 T1、T2 表示).
(1)該同學從 5 個項目中任選一個,恰好是田賽項目的概率 P 為 ;
(2)該同學從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;
(3)該同學從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在反比例函數y=(x>0)的圖象上,點B在反比例函數y=(x>0)的圖象上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是AB延長線上的點,AC的垂直平分線交半圓于點D,交AC于點E,連接DA,DC.已知半圓O的半徑為3,BC=2.
(1)求AD的長.
(2)點P是線段AC上一動點,連接DP,作∠DPF=∠DAC,PF交線段CD于點F.當△DPF為等腰三角形時,求AP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當OB=3,PA=6時,求MB,MC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近幾年杭州市推出了“微公交”,“微公交”是國內首創(chuàng)的純電動汽車租賃服務.它作為一種綠色出行方式,對緩解交通堵塞和停車困難,改善城市大氣環(huán)境,都可以起到積極作用.據了解某租賃點擁有“微公交”輛.據統(tǒng)計,當每輛車的年租金為千元時可全部租出;每輛車的年租金每增加千元,未租出的車將增加輛.
(1)當每輛車的年租金定為千元時,能租出多少輛?
(2)當每輛車的年租金增加多少千元時,租賃公司的年收益(不計車輛維護等其他費用)可達到千元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,BC邊上的點,且DE∥AC,若,,則△ACD的面積為( )
A. 64 B. 72 C. 80 D. 96
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有長為24米的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借一段墻體(墻體的最大可用長度a=10m),設AB的長為xm,所圍的花圃面積為ym2,則y的最大值是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com