如圖,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于點(diǎn)D,則下列結(jié)論中不正確的是( )
A. △ABE≌△ACF
B. 點(diǎn)D在∠BAC的平分線上
C. △BDF≌△CDE
D. 點(diǎn)D是BE的中點(diǎn)
D
【解析】由題, BE⊥AC于E,CF⊥AB于F,∴∠AFC=∠AEB=90°,故在Rt△AEB中,∠B=90°-∠A, 在Rt△AFC中∠C=90°-∠A,∴∠B=∠C,在△ABE和△ACF中, ∠A=∠A, AB = AC,∠B=∠C,∴△ABE≌△ACF(ASA),故A選項(xiàng)正確,∵△ABE≌△ACF,∴AE=AF,AC=AB,連接AD, 在Rt△AFD和Rt△AED中, AE=AF,AD=AD,∴Rt△AFD≌Rt△AED(HL), ∠DAF=∠DAE,即點(diǎn)D在∠BAC的平分線上,選項(xiàng)B正確,由AE=AF,AC=AB,得BF=CE,在△BDF和△CDE中, ∠BFD=∠CED=90°, ∠B=∠C, BF=CE,∴△BDF≌△CDE, 選項(xiàng)C正確,而點(diǎn)D不一定是BE的中點(diǎn),故選D.
試題分析:全等三角形的判定方法有:1.邊邊邊(SSS);2.邊角邊(SAS);3.角角邊(AAS);4.角邊角(ASA);5.直角三角形中的斜邊直角邊(HL);兩三角形全等,對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,由題, BE⊥AC于E,CF⊥AB于F,∴∠AFC=∠AEB=90°,故在Rt△AEB中,∠B=90°-∠A, 在Rt△AFC中∠C=90°-∠A,∴∠B=∠C,在△ABE和△ACF中, ∠A=∠A, AB = AC,∠B=∠C,∴△ABE≌△ACF(ASA),故A選項(xiàng)正確,∵△ABE≌△ACF,∴AE=AF,AC=AB,連接AD, 在Rt△AFD和Rt△AED中, AE=AF,AD=AD,∴Rt△AFD≌Rt△AED(HL), ∠DAF=∠DAE,即點(diǎn)D在∠BAC的平分線上,選項(xiàng)B正確,由AE=AF,AC=AB,得BF=CE,在△BDF和△CDE中, ∠BFD=∠CED=90°, ∠B=∠C, BF=CE,∴△BDF≌△CDE, 選項(xiàng)C正確,而點(diǎn)D不一定是BE的中點(diǎn),故選D.
考點(diǎn):三角形的全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com