精英家教網 > 初中數學 > 題目詳情
如圖,△ABC中,∠ACB=90°,∠B=30°,以C為圓心,CA為半徑的圓交AB于D點,若AC=6,則的長為   
【答案】分析:先根據直角三角形的性質求出∠ACD=60°,利用弧長公式求弧長即可.
解答:解:如圖,連接CD,
∵∠ACB=90°,∠B=30°,AC=6
∴AB=2AC=12
∵CD=AC=6,∠A=90°-30°=60°
∴∠ACD=60°
的長為:=2π.
點評:主要考查了弧長的計算和直角三角形的性質,要熟悉含有30°角的直角三角形的特殊性,牢記弧長公式:
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數;
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案