【題目】如圖,四邊形為菱形,已知,.
(1)求點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)點(diǎn),兩點(diǎn)的一次函數(shù)的解析式.
(3)求菱形的面積.
【答案】(1)C(0,);(2);(3)15
【解析】
(1)利用勾股定理求出AB,再利用菱形的性質(zhì)求出OC的長(zhǎng)即可.
(2)求出C,D兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問(wèn)題.
(3)利用菱形的面積公式計(jì)算即可.
解:(1)∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∵四邊形ABCD是菱形,
∴BC=AB=5,
∴OC=1,
∴C(0,-1);
(2)由題意,四邊形為菱形,C(0,-1),
∴D(3,-5),
設(shè)直線CD的解析式為y=kx+b,
,
解得:,
∴直線CD的解析式為.
(3)∵,,
∴S菱形ABCD=5×3=15.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過(guò)O,D,C三點(diǎn).
(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形內(nèi)一點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到線段,連接.若,,,則四邊形的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(guò)(1,y1)(2,y2).
①若 y1>0 時(shí),則 a+b+c>0
②若 a=b 時(shí),則 y1<y2
③若 y1<0,y2>0,且 a+b<0,則 a>0
④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點(diǎn)一定在第三象限上述四個(gè)判斷正確的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春季流感爆發(fā),有一人患了流感,經(jīng)過(guò)兩輪傳染后共有人患了流感,
(1)每輪傳染中平均一個(gè)人傳染了幾個(gè)人?
(2)經(jīng)過(guò)三輪傳染后共有多少人患了流感?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某同學(xué)想測(cè)量旗桿的高度,他在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同一時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上的影長(zhǎng)為21米,留在墻上的影高為2米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過(guò)點(diǎn)(0,1),將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過(guò)點(diǎn)B作BC⊥AP交AP的延長(zhǎng)線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)BQ并延長(zhǎng)交AC于點(diǎn)F,
①當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),S△PBD×S△BCF=8?
②連接PQ并延長(zhǎng)交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2+2ax+c與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當(dāng)a>0時(shí),如圖所示,若點(diǎn)D是第三象限方拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫(xiě)出自變量m的取值范圍;請(qǐng)問(wèn)當(dāng)m為何值時(shí),S有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鋼鐵廠今年1月份鋼產(chǎn)量為5000噸,3月份上升到7200噸,設(shè)平均每月增長(zhǎng)的百分率為,根據(jù)題意得方程( )
A. 5000(1+x)+5000(1+x)2=7200 B. 5000(1+x2)=7200
C. 5000(1+x)2=7200 D. 5000+5000(1+x)2=7200
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com