【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
【答案】(1)AD=3,(2)當或時,以P、Q、C為頂點的三角形與△ADE相似(3)存在符合條件的M、N點,它們的坐標為:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)
【解析】
解:(1)∵四邊形ABCO為矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10。
由折疊的性質(zhì)得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD。
由勾股定理易得EO=6。∴AE=10﹣6=4。
設(shè)AD=x,則BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3。
∴AD=3。
∵拋物線y=ax2+bx+c過點D(3,10),C(8,0),
∴,解得。∴拋物線的解析式為:。
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5。而CQ=t,EP=2t,∴PC=10﹣2t。
當∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即,解得。
當∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即,解得。
∴當或時,以P、Q、C為頂點的三角形與△ADE相似。
(3)存在符合條件的M、N點,它們的坐標為:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
(1)根據(jù)折疊圖形的軸對稱性,△CED≌△CBD,在Rt△CEO中求出OE的長,從而可得到AE的長;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的長.進一步能確定D點坐標,利用待定系數(shù)法即可求出拋物線的解析式。
(2)由于∠DEC=90°,首先能確定的是∠AED=∠OCE,若以P、Q、C為頂點的三角形與△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在這兩種情況下,分別利用相似三角形的對應邊成比例求出對應的t的值。
(3)假設(shè)存在符合條件的M、N點,分兩種情況討論:
①EC為平行四邊形的對角線,由于拋物線的對稱軸經(jīng)過EC中點,若四邊形MENC是平行四邊形,那么M點必為拋物線頂點。
由得拋物線頂點,則:M(4,)。
∵平行四邊形的對角線互相平分,∴線段MN必被EC中點(4,3)平分,則N(4,﹣)。
②EC為平行四邊形的邊,則ECMN,
設(shè)N(4,m),則M(4﹣8,m+6)或M(4+8,m﹣6);
將M(﹣4,m+6)代入拋物線的解析式中,得:m=﹣38,
此時 N(4,﹣38)、M(﹣4,﹣32);
將M(12,m﹣6)代入拋物線的解析式中,得:m=﹣26,
此時 N(4,﹣26)、M(12,﹣32)。
綜上所述,存在符合條件的M、N點,它們的坐標為:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段,是直線上一動點,點,分別為,的中點,對下列各值:①線段的長;②的周長;③的面積;④直線,之間的距離;⑤的大小.其中不會隨點的移動而改變的是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,是對角線上一個動點,連結(jié),過作,,
,分別為垂足.
(1)求證:;
(2)①寫出、、三條線段滿足的等量關(guān)系,并證明;②求當,時,的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別加工100個零件,甲第1個小時加工了10個零件,之后每小時加工30個零件.乙在甲加工前已經(jīng)加工了40個零件,在甲加工3小時后乙開始追趕甲,結(jié)果兩人同時完成任務.設(shè)甲、乙兩人各自加工的零件數(shù)為(個),甲加工零件的時間為(時),與之間的函數(shù)圖象如圖所示.
(1)在乙追趕甲的過程中,求乙每小時加工零件的個數(shù).
(2)求甲提高加工速度后甲加工的零件數(shù)與之間的函數(shù)關(guān)系式.
(3)當甲、乙兩人相差12個零件時,直接寫出甲加工零件的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在等腰三角形ABC中,120BAC180,ABAC,ADBC于點D,以AC為邊作等邊三角形ACE,ACE與ABC在直線AC的異側(cè),直線BE交直線AD于點F,連接FC交AE于點M.
(1)求EFC的度數(shù);
(2)求證:FE+FA=FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形中,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨著點的位置變化而變化.
(1)如圖1,當點在菱形內(nèi)部或邊上時,連接,與的數(shù)量關(guān)系是______,與的位置關(guān)系是______;
(2)當點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由(選擇圖2,圖3中的一種情況予以證明或說理);
(3)如圖4,當點在線段的延長線上時,連接,若,,求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com