【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為千米,出租車離甲地的距離為千米,兩車行駛的時(shí)間為小時(shí),、關(guān)于的函數(shù)圖像如圖所示:

1)根據(jù)圖像,求出、關(guān)于的函數(shù)關(guān)系式;

2)設(shè)兩車之間的距離為千米.

①求兩車相遇前關(guān)于的函數(shù)關(guān)系式;

②求出租車到達(dá)甲地后關(guān)于的函數(shù)關(guān)系式;

3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車進(jìn)入加油站時(shí),出租車恰好進(jìn)入加油站,求加油站離甲地的距離.

【答案】1y160x0x10),y2100x6000x6);(2)①Sy2y1160x600;②S60x(6≤x≤10);(3150km300km

【解析】

1)直接運(yùn)用待定系數(shù)法就可以求出y1y2關(guān)于x的函數(shù)圖關(guān)系式;

2)①根據(jù)當(dāng)0x時(shí),求出即可,②當(dāng)6x10時(shí),求出即可;

3)分A加油站在甲地與B加油站之間,B加油站在甲地與A加油站之間兩種情況列出方程求解即可.

解:(1)設(shè)y1k1x,由圖可知,函數(shù)圖象經(jīng)過點(diǎn)(10,600),

10k1600,

解得:k160,

y160x0x10),

設(shè)y2k2xb,由圖可知,函數(shù)圖象經(jīng)過點(diǎn)(0,600),(6,0),則

解得:

y2100x6000x6);

2)①由題意,得

60x100x600

x,即第小時(shí)兩車相遇

當(dāng)0x時(shí), Sy2y1160x600;

②令y2100x600=0,解得:x=6

即第6小時(shí)出租車到達(dá)甲地

當(dāng)6x10時(shí),S60x;

3)由題意,得

①當(dāng)A加油站在甲地與B加油站之間時(shí),(100x60060x200,

解得x,

此時(shí),A加油站距離甲地:60×150km,

②當(dāng)B加油站在甲地與A加油站之間時(shí),60x100x600)=200,

解得x5,此時(shí),A加油站距離甲地:60×5300km,

綜上所述,A加油站到甲地距離為150km300km

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,BOM上一點(diǎn),BAONA,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°CE,連結(jié)BE,若AB=4,則BE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C1:y=mx2﹣2mx+m+4與y軸交于點(diǎn)A(0,3),與x軸交于點(diǎn)B、C(點(diǎn)B在點(diǎn)C左側(cè)).

(1)求該拋物線的解析式;

(2)求點(diǎn)B的坐標(biāo);

(3)若拋物線C2:y=a(x﹣1)2﹣1(a≠0)與線段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy的中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)ym≠0)的圖象交于二、四象限內(nèi)的AB兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n),線段OA,Ex軸上一點(diǎn),且tan∠AOE

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△A0B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處,此時(shí)測得島礁P在北偏東30°方向,同時(shí)測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺風(fēng)到來之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行_____小時(shí)即可到達(dá).(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識再現(xiàn)

如圖1,若點(diǎn),在直線同側(cè),,的距離分別是32,,現(xiàn)在直線上找一點(diǎn),使的值最小,做法如下:

作點(diǎn)關(guān)于直線的對稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn),線段的長度即為的最小值,請你求出這個(gè)最小值.

實(shí)踐應(yīng)用

如圖2,菱形,,點(diǎn),分別為線段,,上的任意一點(diǎn),則的最小值為______;

拓展延伸

如圖3,在四邊形的對角線上找一點(diǎn),使,保留作圖痕跡,不必寫出作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).

(1) 求一次函數(shù)的表達(dá)式;

(2) 根據(jù)圖象寫出kx+b-<0x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+mx+m﹣3=0.

(1)若該方程的一個(gè)根為2,求m的值及方程的另一個(gè)根;

(2)求證:不論m取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD為正方形,點(diǎn)E是邊AD上任意一點(diǎn),ABE接逆時(shí)針方向旋轉(zhuǎn)一定角度后得到ADF,延長BEDF于點(diǎn)G,且AF=4,AB=7.

(1)請指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

(2)求BE的長;

(3)試猜測BGDF的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案