如圖,已知反比例函數(shù)y=
k
x
(k<0)
的圖象經(jīng)過(guò)點(diǎn)A(-
3
,m)
,過(guò)點(diǎn)A作AB⊥x軸精英家教網(wǎng)于點(diǎn)B,且△AOB的面積為
3

(1)求k和m的值;
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過(guò)點(diǎn)A,并且與x軸相交于點(diǎn)C,求|AO|:|AC|的值;
(3)若D為坐標(biāo)軸上一點(diǎn),使△AOD是以AO為一腰的等腰三角形,請(qǐng)寫(xiě)出所有滿(mǎn)足條件的D點(diǎn)的坐標(biāo).
分析:(1)由三角形面積和反比例函數(shù)經(jīng)過(guò)的點(diǎn)可以求出k和m的值;
(2)由(1)的結(jié)果,可得出AO的長(zhǎng)度,再由線(xiàn)段與坐標(biāo)軸的交點(diǎn)求出直線(xiàn)方程,從而得出C點(diǎn)坐標(biāo),得出AC的值;
(3)根據(jù)等腰三角形的性質(zhì)及點(diǎn)在坐標(biāo)軸上進(jìn)行分類(lèi)討論,得出正確的結(jié)果.
解答:解:(1)∵AB⊥x軸,
S△AOB=
1
2
|xAyA|=
1
2
|k|=
3

∵k<0,
k=-2
3

-
3
m=k
,
∴m=2.
故k和m的值分別為-2
3
和2


(2)由(1)得m=2,
A(-
3
,2)

∴由已知得2=-
3
a+1
,
a=-
3
3

∴一次函數(shù)為y=-
3
3
x+1
,令y=0得x=
3
,
C(
3
,0)
,
OC=
3

OB=
3
,
BC=2
3
,AC=
AB2+BC2
=4

又∵AO=
(-
3
)
2
+22
=
7

AO:AC=
7
:4


(3)由(2)知,AO=
7

又∵D為坐標(biāo)軸上一點(diǎn),使△AOD是以AO為一腰的等腰三角形,
∴由分析可知:
滿(mǎn)足D點(diǎn)的坐標(biāo)為:(0,±
7
),(0,4),(-2
3
,0),(±
7
,0).
點(diǎn)評(píng):本題綜合考查反比例函數(shù)與方程組的相關(guān)知識(shí)點(diǎn).先由點(diǎn)的坐標(biāo)求函數(shù)解析式,然后解由解析式組成的方程組求出交點(diǎn)的坐標(biāo),體現(xiàn)了數(shù)形結(jié)合的思想.同時(shí)還加入了分類(lèi)討論的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過(guò)A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過(guò)點(diǎn)A(2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過(guò)點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫(xiě)出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過(guò)第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線(xiàn)y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線(xiàn)y=ax+b的解析式;
(2)設(shè)直線(xiàn)y=ax+b與x軸交于點(diǎn)M,求AM的長(zhǎng);
(3)在雙曲線(xiàn)上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案