【題目】某校積極推行“互動生成的學本課堂”卓有成效,“小組合作學習”深入人心,九年級某學習小組在操作實踐過程中發(fā)現(xiàn)了一個有趣的問題:將直尺和三角板(三角板足夠大)按如圖所示的方式擺放在平面直角坐標系中,直尺的左側(cè)邊CD在直線x4上,在保證直角三角板其中一條直角邊始終過點A0,4),同時使得直角頂點ECD上滑動,三角板的另一直角邊與x軸交于點B,當點E從點C45)滑動到點D4,0)的過程中,點B所經(jīng)過的路徑長為_____

【答案】

【解析】

過點AAFCDF,分點E在點F上方和點F下方兩種情況討論,通過相似三角形的性質(zhì)和二次函數(shù)的性質(zhì)可求解.

解:如圖,過點AAFCDF,則AF=4,CF=1,

當點E與點C重合時,三角板與x軸交于點B',

∵∠ACB'=90°,AFCD,

∴∠ACF+B'CD=90°,∠CAF+ACF=90°,

∴∠CAF=B'CD,且∠AFC=B'DC=90°

∴△ACF∽△CB'D,

,

B'D=,

∴點E從點C到點F,點B所經(jīng)過的路徑為,

當點E從點F到點D時,∵∠AEF+BED=90°,∠AEF+EAF=90°,

∴∠BED=EAF,

又∵∠AFE=EDB=90°,

∴△AEF∽△EBD,

,

BD=

∴當EF=2時,BD有最大值為1

∴點E從點F到點D,點B所經(jīng)過的路徑為2,

∴點B所經(jīng)過的路徑長=2+=

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、FC、E在一條直線上,FBCE,ABEDACFDADBEO

1)求證:△ABC≌△DEF;

2)求證:ADBE互相平分;

3)若BF5,FC4,直接寫出EO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條筆直的公路穿過草原,公路邊有一衛(wèi)生站距公路的地方有一居民點、之間的距離為.一天某司機駕車從衛(wèi)生站送一批急救藥品到居民點.已知汽車在公路上行駛的最快速度是,在草地上行駛的最快速度是.問司機應在公路上行駛多少千米?全部所用的行車時間最短?最短時間為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在菱形ABCD中,動點P從點B出發(fā),沿折線BCDB運動.設點P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。

A. B. C. 5D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17.

(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?

(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸交于點B,與y軸交于點C,拋物線經(jīng)過BC兩點,且與x軸交于另一點A

1)求拋物線的解析式.

2)點P是線段BC下方的拋物線上的動點(不與點BC重合),過PPDy軸交BC于點D,以PD為直徑的圓交BC于另一點E,求DE的最大值及此時點P的坐標;

3)當(2)中的DE取最大值時,將PDE繞點D旋轉(zhuǎn),當點P落在坐標軸上時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

情景再現(xiàn)

我們動手操作:把正方形ABCD,從對角線剪開就分剪出兩個等腰直角三角形,把其中一個等腰三角形與正方形ABCD重新組合在一起,圖形變得豐富起來,當圖形旋轉(zhuǎn)時問題也隨旋轉(zhuǎn)應運而生.

如圖①把正方形ABCD沿對角線剪開,得兩個等腰直角三角形△ACD和△BCE,

1)問題呈現(xiàn)

我們把剪下的兩個三角形一個放大另一個縮小拼成如圖②所示

①點P是一動點,若AB=3PA=1,當點P位于_ __時,線段PB的值最;若AB=3,PA=5,當點P位于__ _時,線段PB有最大值.PB的最大值和最小值分別是______

②直接寫出線段AEDB的關(guān)系是_ ________

2)我們把剪下的其中一個三角形放大與正方形組合如圖③所示,點E在直線BC上,FMCD交直線CDM

①當點EBC上時,通過觀察、思考易證:AD=MF+CE;

②當點EBC的延長線時,如圖④所示;

當點ECB的延長線上時,如圖⑤所示,

線段AD、MFCE具有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇圖④或圖⑤證明你的猜想.

問題拓展

3)連接EM,當=8,=50,其他條件不變,直接寫出線段CE的長_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 和正三角形 AEF 都內(nèi)接于⊙OEF BC,CD 分別相交于點 G,H,則 的值為(

A.B.C.D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為 1 個單位長度的小正方形組成的網(wǎng)格中,建立平面直角坐標系 A(1,7) B(6,3) C(2,3)

1)將ABC 繞格點 P(11) 順時針旋轉(zhuǎn)90,得到 ABC, 畫出 ABC,并寫出下列各點坐標: A( ,   ) B(    , ) C( , );

2)找格點 M ,連CM ,使CM AB ,則點 M 的坐標為( );

3)找格點 N ,連 BN ,使 BN AC ,則點 N 的坐標為( )

查看答案和解析>>

同步練習冊答案