一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“靈”、“秀”、“黃”、“岡”的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,球上的漢字剛好是“黃”的概率為多少?
(2)甲從中任取一球,不放回,再從中任取一球,請(qǐng)用樹狀圖的方法,求出甲取出的兩個(gè)球上的漢字恰能組成“靈秀”或“黃岡”(漢字不分先后順序)的概率P1;
(3)乙從中任取一球,記下漢字后再放回袋中,然后再從中任取一球,記乙取出的兩個(gè)球上的漢字恰能組成“靈秀”或“黃岡” (漢字不分先后順序)的概率為P2,請(qǐng)直接寫出P2的值,并比較 P1,P2的大小.(2+3+2=7)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
隨著國(guó)家刺激消費(fèi)政策的落實(shí),某縣擁有家用汽車的數(shù)量快速增長(zhǎng),截止2009年底該縣家用汽車擁有量為76032輛.己知2007年底該縣家用汽車擁有量為52800輛.請(qǐng)解答如下問題:
(1)2007年底至2009年底我市家用汽車擁有量的年平均增長(zhǎng)率是多少?
(2)為保護(hù)城市環(huán)境,縣政府要求到2011年底家用汽車擁有量不超過80000輛,據(jù)估計(jì)從2009年底起,此后每年報(bào)廢的家用汽車數(shù)量是上年底家用汽車擁有量的4%,要達(dá)到縣政府的要求,每年新增家用汽車數(shù)量最多不超過多少輛?(假定每年新增家用汽車數(shù)量相同,結(jié)果精確到個(gè)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD,M為BC邊的中點(diǎn).若∠B=∠AMD=∠C=45°,AB=8,CD=9,則AD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=6,OC=4.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段CP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得點(diǎn)D,點(diǎn)D隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接DP、DA.則
(1)點(diǎn)D的坐標(biāo)為;(2)t=3時(shí),△DPA的面積最大為;
(3)△DPA不能成為直角三角形;(4)隨著點(diǎn)P的運(yùn)動(dòng),點(diǎn)D運(yùn)動(dòng)路線的長(zhǎng)為.
上述結(jié)論正確的有( ).
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在正方形ABCD中AC與BD交于點(diǎn)O,形外有一點(diǎn)E,使∠AED=90°,且DE=3,OE=,則AE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
(4)在AC 段的拋物線上有一點(diǎn)R到直線AC的距離最大,請(qǐng)直接寫出點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AE于點(diǎn)E
(1)求證:∠E=∠C;
(2)當(dāng)⊙O的半徑為3,tanC= 時(shí),求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com