一副三角板如圖擺放,若∠AGB=90°,則∠AFE=
105
105
度.
分析:由題意易求得:∠DAF=∠BAG=60°,又由三角形外角的性質(zhì),即可求得∠AFE的度數(shù).
解答:解:根據(jù)題意得:∠BAC=∠DAE=90°,∠B=30°,∠D=∠E=45°,
∵∠DAF=∠DAE-∠CAE,∠EAB=∠BAC-∠CAE,
∴∠DAF=∠EAB,
∵∠AGB=90°,
∴∠EAB=90°-∠B=60°,
∴∠DAF=60°,
∴∠AFE=∠D+∠DAF=105°.
故答案為:105°.
點評:此題考查了直角三角形的性質(zhì)與三角形外角的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖擺放,若∠BAE=135°,則∠CAD的度數(shù)是
45°
45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•黃巖區(qū)模擬)一副三角板如圖擺放,點F是45°角三角板ABC的斜邊的中點,AC=4.當30°角三角板DEF的直角頂點繞著點F旋轉(zhuǎn)時,直角邊DF,EF分別與AC,BC相交于點M,N.在旋轉(zhuǎn)過程中有以下結(jié)論:①MF=NF:②四邊形CMFN有可能為正方形;③MN長度的最小值為2;④四邊形CMFN的面積保持不變;⑤△CMN面積的最大值為2.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖擺放,已知∠BAE=136°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖1擺放,∠DCE=30゜,現(xiàn)將∠DCE繞C點以15゜/s的速度逆時針旋轉(zhuǎn),旋轉(zhuǎn)時間為t(s).
(1)t為多少時,CD恰好平分∠BCE?請在圖2中自己畫圖,并說明理由.
(2)當6<t<8時,CM平分∠ACE,CN平分∠BCD,求∠MCN,在圖3中完成.
(3)當8<t<12時,(2)中結(jié)論是否發(fā)生變化?請在圖4中完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖擺放,若∠BAE=140°,則∠CAD的度數(shù)是
40°
40°

查看答案和解析>>

同步練習冊答案