如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求數(shù)學(xué)公式的值.
(2)若E為x軸上的點(diǎn),且S△AOE=數(shù)學(xué)公式,求經(jīng)過(guò)D、E兩點(diǎn)的直線(xiàn)的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線(xiàn)AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)x2-7x+12=0,
(x-3)(x-4)=0,
∴x-3=0,x-4=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
在△AOB中,AB===5,
∴sin∠ABC==;

(2)根據(jù)題意,設(shè)E(x,0),則
S△AOE=×OA×x=×4x=,
解得x=,
∴E(,0)或(-,0),
∵四邊形ABCD是平行四邊形,
∴點(diǎn)D的坐標(biāo)是(6,4),
設(shè)經(jīng)過(guò)D、E兩點(diǎn)的直線(xiàn)的解析式為y=kx+b,
則①,
解得
∴解析式為y=x-;

解得,
解析式為:y=x+
在△AOE與△DAO中,==,
==,
=,
又∵∠AOE=∠OAD=90°,
∴△AOE∽△DAO;

(3)根據(jù)計(jì)算的數(shù)據(jù),OB=OC=3,
∴AO平分∠BAC,
①AC、AF是鄰邊,點(diǎn)F在射線(xiàn)AB上時(shí),AF=AC=5,
所以點(diǎn)F與B重合,
即F(-3,0),
②AC、AF是鄰邊,點(diǎn)F在射線(xiàn)BA上時(shí),M應(yīng)在直線(xiàn)AD上,且FC垂直平分AM,
點(diǎn)F(3,8).
③AC是對(duì)角線(xiàn)時(shí),做AC垂直平分線(xiàn)L,AC解析式為y=-x+4,直線(xiàn)L過(guò)(,2),且k值為(平面內(nèi)互相垂直的兩條直線(xiàn)k值乘積為-1),
L解析式為y=x+,聯(lián)立直線(xiàn)L與直線(xiàn)AB求交點(diǎn),
∴F(-,-),
④AF是對(duì)角線(xiàn)時(shí),過(guò)C做AB垂線(xiàn),垂足為N,根據(jù)等積法求出CN=,勾股定理得出,AN=,做A關(guān)于N的對(duì)稱(chēng)點(diǎn)即為F,AF=,過(guò)F做y軸垂線(xiàn),垂足為G,F(xiàn)G=×=
∴F(-,).
綜上所述,滿(mǎn)足條件的點(diǎn)有四個(gè):F1(-3,0);F2(3,8);F3(-,-);F4(-,).
分析:(1)解一元二次方程求出OA,OB的長(zhǎng)度,再利用勾股定理求出AB的長(zhǎng)度,再代入計(jì)算即可;
(2)先根據(jù)三角形的面積求出點(diǎn)E的坐標(biāo),并根據(jù)平行四邊形的對(duì)邊相等的性質(zhì)求出點(diǎn)D的坐標(biāo),然后利用待定系數(shù)法求解直線(xiàn)的解析式;分別求出兩三角形夾直角的兩對(duì)應(yīng)邊的比,如果相等,則兩三角形相似,否則不相似;
(3)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點(diǎn)F在射線(xiàn)AB上與射線(xiàn)BA上兩種情況,以及AC與AF分別是對(duì)角線(xiàn)的情況分別進(jìn)行求解計(jì)算.
點(diǎn)評(píng):本題考查了解一元二次方程,相似三角形的性質(zhì)與判定,待定系數(shù)法求函數(shù)解析式,綜合性較強(qiáng),(3)求點(diǎn)F要根據(jù)AC與AF是鄰邊與對(duì)角線(xiàn)的情況進(jìn)行討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過(guò)D、E兩點(diǎn)的直線(xiàn)的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線(xiàn)AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線(xiàn)BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長(zhǎng)是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,將直線(xiàn)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線(xiàn)段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫(huà)出直線(xiàn)AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線(xiàn)AC旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫(huà)圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線(xiàn)AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長(zhǎng)為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案