如圖,矩形紙片ABCD中,BC=4,AB=3,點(diǎn)P是BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC′D;作∠BPC′的角平分線,交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是


  1. A.
  2. B.
  3. C.
  4. D.
D
分析:根據(jù)題意,連接DE,因?yàn)椤鱌CD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;又PE為∠BPC′的角平分線,可推知∠EPD=90°,又因?yàn)锽P=x,BE=y,BC=4,AB=3,分別用x和y表示出PD和EP和DE,在Rt△PED中利用勾股定理,即可得出一個(gè)關(guān)于x和y的關(guān)系式,化簡(jiǎn)即可.
解答:解:連接DE,
△PCD沿PD翻折,得到△PC′D,故有DP平分∠CPC′;
又因?yàn)镻E為∠BPC′的角平分線,
可推知∠EPD=90°,
已知BP=x,BE=y,BC=4,AB=3,
即在Rt△PCD中,PC=4-x,DC=3.即PD2=(4-x)2+9;
在Rt△EBP中,BP=x,BE=y,故PE2=x2+y2;
在Rt△ADE中,AE=3-y,AD=4,故DE2=(3-y)2+16
在Rt△PDE中,DE2=PD2+PE2
即x2+y2+(4-x)2+9=(3-y)2+16
化簡(jiǎn)得:
x=-(x2-4x);
結(jié)合題意,只有選項(xiàng)D符合題意.
故選D.
點(diǎn)評(píng):本題主要考查了勾股定理的實(shí)際應(yīng)用和對(duì)二次函數(shù)解析式的分析和讀圖能力,是一道不錯(cuò)的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對(duì)角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說(shuō)明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(30):25.3 軸對(duì)稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽(yáng))如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊(cè)答案