4.計(jì)算:
(1)(-1)2015-($\frac{1}{2}$)-3+(cos68°+$\frac{5}{π}$)0+|3$\sqrt{3}$-8sin60°|;
(2)|3-$\sqrt{12}$|+($\frac{\sqrt{6}}{2+\sqrt{2}}$)0+cos230°-4sin60°.

分析 (1)原式利用乘方的意義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及絕對(duì)值的代數(shù)意義計(jì)算即可得到結(jié)果;
(2)原式利用絕對(duì)值的代數(shù)意義,零指數(shù)冪法則,以及特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.

解答 解:(1)原式=-1-8+1+$\sqrt{3}$=$\sqrt{3}$-8;
(2)原式=2$\sqrt{3}$-3+1+$\frac{3}{4}$-2$\sqrt{3}$=-1$\frac{1}{4}$.

點(diǎn)評(píng) 此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.體育測(cè)試時(shí),九年級(jí)一名學(xué)生,雙手扔實(shí)心球.已知實(shí)心球所經(jīng)過(guò)的路線(xiàn)是某個(gè)二次函數(shù)圖象的一部分,如果球出手處A點(diǎn)距離地面的高度為2m,當(dāng)球運(yùn)行的水平距離為4m時(shí),達(dá)到最大高度4m的B處(如圖),問(wèn)該學(xué)生把實(shí)心球扔出多遠(yuǎn)?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知A=ax2-3x+by-1,B=3-y-$\frac{3}{2}$x+x2且無(wú)論x,y為何值時(shí),A-2B的值始終不變.
(1)分別求a、b的值;
(2)求ba的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在整式:-0.34y2,π,-52yz2,-y,-y2-1中,單項(xiàng)式有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知平面直角坐標(biāo)系中,點(diǎn)A(-3,3)、B(-2,-2).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo)為(1,0).
(3)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并直接寫(xiě)出A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,大拇指與小拇指盡量張開(kāi)時(shí),兩指尖的距離稱(chēng)為指距.根據(jù)最近人體構(gòu)造學(xué)的研究成果表明,一般情況下人的指距d和身高h(yuǎn)成某種關(guān)系.如表是測(cè)得的指距與身高的一組數(shù)據(jù):
指距d(cm)20212223
身高h(yuǎn)(cm)160169178187
根據(jù)上表解決下面這個(gè)實(shí)際問(wèn)題:姚明的身高是226厘米,可預(yù)測(cè)他的指距約為( 。
A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,△ABC中,∠B=90°,AB=6cm,BC=12cm.點(diǎn)P從點(diǎn)A開(kāi)始,沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng);點(diǎn)Q從點(diǎn)B開(kāi)始,沿著B(niǎo)C邊向點(diǎn)C以每秒2cm的速度移動(dòng).如果P,Q同時(shí)出發(fā).
(1)經(jīng)過(guò)幾秒,P、Q的距離最短.
(2)經(jīng)過(guò)幾秒,△PBQ的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,△ABC中,BC=10cm,BC邊上的高AD=8cm,E、F分別為AC、AB上的點(diǎn),且EF∥BC,以EF為邊向下作矩形EFGH,且滿(mǎn)足EF=2FG,設(shè)EF的長(zhǎng)為x(cm),矩形EFGH與△ABC重疊部分的面積為y(cm2).
(1)當(dāng)GH與BC重合時(shí),求x的值;
(2)求y與x的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,二次函數(shù)y=$\frac{5}{4}$x2(0≤x≤2)的圖象記為曲線(xiàn)C1,將C1繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得曲線(xiàn)C2
(1)請(qǐng)畫(huà)出C2;
(2)寫(xiě)出旋轉(zhuǎn)后A(2,5)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)(-5,2);
(3)直接寫(xiě)出C1旋轉(zhuǎn)至C2過(guò)程中掃過(guò)的面積$\frac{29}{4}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案