【題目】猜想與證明:如圖①擺放矩形紙片ABCD與矩形紙片ECGF,使B,C,G三點在一條直線上,CE在邊CD上.連結AF,若M為AF的中點,連結DM,ME,試猜想DM與ME的數(shù)量關系,并證明你的結論.
拓展與延伸:
(1)若將“猜想與證明”中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關系為__________________;
(2)如圖②擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結論仍然成立.[提示:直角三角形斜邊上的中線等于斜邊的一半]
① ②
【答案】猜想與證明:猜想DM與ME的數(shù)量關系是:DM=ME,證明見解析;拓展與延伸:(1)DM=ME,DM⊥ME;(2)證明見解析
【解析】
猜想:延長EM交AD于點H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線等于斜邊的一半證明.
(1)延長EM交AD于點H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線等于斜邊的一半證明,
(2)連接AC,AC和EC在同一條直線上,再利用直角三角形中,斜邊的中線等于斜邊的一半證明,
解:猜想與證明:
猜想DM與ME的數(shù)量關系是:DM=ME.
證明:如圖①,延長EM交AD于點H.
①
∵四邊形ABCD、四邊形ECGF都是矩形,
∴AD∥BG,EF∥BG,∠HDE=90°.
∴AD∥EF.
∴∠AHM=∠FEM.
又∵AM=FM,∠AMH=∠FME,
∴△AMH≌△FME.
∴HM=EM.
又∵∠HDE=90°,
∴DM=EH=ME;
(1)∵四邊形ABCD和CEFG是正方形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
∵四邊形ABCD和CEFG是正方形,
∴AD=CD,CE=EF,
∵△FME≌△AMH,
∴EF=AH,
∴DH=DE,
∴△DEH是等腰直角三角形,
又∵MH=ME,
故答案為:DM=ME,DM⊥ME;
(2)證明:如圖②,連結AC.
②
∵四邊形ABCD、四邊形ECGF都是正方形,
∴∠DCA=∠DCE=∠CFE=45°,
∴點E在AC上.
∴∠AEF=∠FEC=90°.
又∵點M是AF的中點,
∴ME=AF.
∵∠ADC=90°,點M是AF的中點,
∴DM=AF.
∴DM=ME.
∵ME=AF=FM,DM=AF=FM,
∴∠DFM= (180°-∠DMF),∠MFE= (180°-∠FME),
∴∠DFM+∠MFE= (180°-∠DMF)+ (180°-∠FME)
=180°- (∠DMF+∠FME)
=180°-∠DME.
∵∠DFM+∠MFE=180°-∠CFE=180°-45°=135°,
∴180°-∠DME=135°.
∴∠DME=90°.
∴DM⊥ME.
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,假分數(shù)可以化為整數(shù)與真分數(shù)的和的形式.例如:.在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.例如:像,,…這樣的分式是假分式;像 ,,…這樣的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式. 例如: ’
.
(1)將分式化為整式與真分式的和的形式;
(2)如果分式的值為整數(shù),求x的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習絕對值后,我們知道,|a|表示數(shù)a在數(shù)軸上的對應點與原點的距離.如:|5|表示5在數(shù)軸上的對應點到原點的距離.而|5|=|5﹣0|,即|5﹣0|也可理解為5、0在數(shù)軸上對應的兩點之間的距離.類似的,|5-3|表示5與3之差的絕對值,也可理解為5與3兩數(shù)在數(shù)軸上所對應的兩點之間的距離.如|x-3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示數(shù)x的點之間的距離,一般地,點A、B在數(shù)軸上分別表示數(shù)a、b,那么A、B之間的距離可表示為|a﹣b|.
請根據(jù)絕對值的意義并結合數(shù)軸解答下列問題:
(1)數(shù)軸上表示2和3的兩點之間的距離是 ;數(shù)軸上表示數(shù)a的點與表示﹣2的點之間的距離表示為 ;
(2)數(shù)軸上點P表示的數(shù)是2,P、Q兩點的距離為3,則點Q表示的數(shù)是 ;
(3)數(shù)軸上有一個點表示數(shù)a,則|a+1|+|a-3|+|a+8|的最小值為 ;
(4)a、b、c、d在數(shù)軸上的位置如下圖所示,若|a-d|=12,|b-d|=7,|a-c|=9,則|b-c|等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下面三行數(shù)
①2,-4,8,-16,32,-64,......;
②4,-2,10,-14,34,-62,......;
③-1,2,-4,8,-16,32,......;
取每一行的第n個數(shù),依次記為a,b,c. 如上圖,當n=2時,x=-4,y=-2,z=2.
(1)當n=7時,請直接寫出x、y、z的值,并求這三個數(shù)中最大的數(shù)與最小的數(shù)的差;
(2)已知n為偶數(shù),且x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;
(3)若m=x+y+z,則x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為______(用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】假設北碚萬達廣場地下停車場有5個出入口,每天早晨6點開始對外停車且此時車位空置率為75%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進口和3個出口,8小時車庫恰好停滿;如果開放3個進口和2個出口,2小時車庫恰好停滿.2019年元旦節(jié)期間,由于商場人數(shù)增多,早晨6點時的車位空置率變?yōu)?/span>60%,又因為車庫改造,只能開放2個進口和1個出口,則從早晨6點開始經(jīng)過________小時車庫恰好停滿.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1的坐標.
(2)畫出△ABC繞點B逆時針旋轉90°后得到的△A2B2C2,并寫出A2的坐標.
(3)畫出△A2B2C2關于原點O成中心對稱的△A3B3C3,并寫出A3的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判斷△OBC的形狀,并證明你的結論
(2)求BC的長
(3)求⊙O的半徑OF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com