【題目】在學習絕對值后,我們知道,|a|表示數(shù)a在數(shù)軸上的對應(yīng)點與原點的距離.如:|5|表示5在數(shù)軸上的對應(yīng)點到原點的距離.而|5|=|50|,即|50|也可理解為5、0在數(shù)軸上對應(yīng)的兩點之間的距離.類似的,|53|表示53之差的絕對值,也可理解為53兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離.如|x3|的幾何意義是數(shù)軸上表示有理數(shù)3的點與表示數(shù)x的點之間的距離,一般地,點A、B在數(shù)軸上分別表示數(shù)ab,那么AB之間的距離可表示為|ab|

請根據(jù)絕對值的意義并結(jié)合數(shù)軸解答下列問題:

1)數(shù)軸上表示23的兩點之間的距離是 ;數(shù)軸上表示數(shù)a的點與表示﹣2的點之間的距離表示為 ;

2)數(shù)軸上點P表示的數(shù)是2,P、Q兩點的距離為3,則點Q表示的數(shù)是 ;

3)數(shù)軸上有一個點表示數(shù)a,則|a+1|+|a-3|+|a+8|的最小值為 ;

4ab、c、d在數(shù)軸上的位置如下圖所示,若|a-d|=12|b-d|=7,|a-c|=9,則|b-c|等于 .

【答案】11|a+2|;(25-1;(311;(44.

【解析】

在數(shù)軸上表示兩點距離用數(shù)軸右邊的點減去左邊的點,或者不知大小時加上絕對值,幾個絕對值的和,則需要分類討論,去掉絕對值后的值取決于絕對值里式子的符號,負數(shù)的

解:(123之間的距離為 3-2=1,a-2之間的距離為|a+2|;

2)在數(shù)軸上到2的距離為3的點有兩個, -15;

3)需要分類討論

a時,|a+1|+|a-3|+|a+8|=3a+615

時,11|a+1|+|a-3|+|a+8|15

時,11|a+1|+|a-3|+|a+8|18

時, |a+1|+|a-3|+|a+8|18

綜上,最小值為11;

4 由圖可得,所以

|a-d|=d-a=12,①

|b-d|=d-b=7,②

|a-c|=c-a=9,

① - 得,b-a=5,④

由③-④可得,c-b=4,

|b-c|=c-b,所以|b-c|=4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為保護環(huán)境,我市某公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車3輛,B型公交車2輛,共需600萬元.

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

(3)(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=k1x+bx軸、y軸相交于P,Q兩點,與y=的圖象相交于A(-2,m),B1n)兩點,連接OA,OB,給出下列論:①k1k2<0;②m+n=0;③SAOP=SBOQ不等式k1x+b>的解集為x<20<x<1.其中正確的結(jié)論是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點PAB上一動點(不與A,B重合),對角線ACBD相交于點O,過點P分別作AC,BD的垂線,分別交AC,BD于點EF,交ADBC于點M,N.下列結(jié)論:①△APE≌△AME;②PMPNBD;③PE2PF2PO2.其中正確的有(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線yx與雙曲線y (k>0)交于AB兩點,且點A的橫坐標為4.C是雙曲線上一點,且縱坐標為8,則AOC的面積為(  )

A. 8 B. 32 C. 10 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】猜想與證明:如圖①擺放矩形紙片ABCD與矩形紙片ECGF,使B,C,G三點在一條直線上,CE在邊CD上.連結(jié)AF,若MAF的中點,連結(jié)DM,ME,試猜想DMME的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展與延伸:

(1)若將“猜想與證明”中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關(guān)系為__________________;

(2)如圖②擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.[提示:直角三角形斜邊上的中線等于斜邊的一半]

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作ABDE,連接AD,EC.

(1)求證:△ADC≌△ECD;

(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B、C為數(shù)軸上三點,若點CA的距離是點CB的距離2倍,我們就稱點C是(A,B)的好點.例如,如圖1,點A表示的數(shù)為﹣1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(AB)的好點;又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是(A,B)的好點,但點D是(BA)的好點.

知識運用:如圖2,MN為數(shù)軸上兩點,點M所表示的數(shù)為﹣2,點N所表示的數(shù)為4

1)數(shù)      所表示的點是(M,N)的好點;

2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣20,點B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點B出發(fā),以2個單位每秒的速度向左運動,到達點A停止.當t為何值時,P、AB中恰有一個點為其余兩點的好點?

查看答案和解析>>

同步練習冊答案