【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CE=2DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結(jié)AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正確結(jié)論的個數(shù)是( )
A.2 B.3 C.4 D.5
【答案】D.
【解析】
試題分析:∵正方形ABCD的邊長為6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折疊使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∵AB=AF,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG=∠BAD=45°,所以①正確;
設BG=x,則GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵,∴,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正確;
∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正確;
∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正確;
過F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比為:=,∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)=3.6,所以⑤正確.
故正確的有①②③④⑤,故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,
(1)指出直線AB,CD被AC所截形成的內(nèi)錯角;
(2)指出直線AB,CD被BE所截形成的同位角;
(3)找出圖中∠1的所有同旁內(nèi)角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由: 如圖,CD∥EF,∠1=∠2,求證:∠3=∠ACB.
證明:∵CD∥EF,
∴∠DCB=∠2
∵∠1=∠2,∴∠DCB=∠1.
∴GD∥CB .
∴∠3=∠ACB .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點P , 垂足為E , 連接CP , 求∠CPB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀并補充下面推理過程:
(1)如圖1,已知點A是BC外一點,連接AB,AC.求∠BAC+∠B+∠C的度數(shù). 解:過點A作ED∥BC,所以∠B= ,∠C= .
又因為∠EAB+∠BAC+∠DAC=180°.
所以∠B+∠BAC+∠C=180°.
(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).
(3)已知AB∥CD,點C在點D的右側(cè),∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間. Ⅰ.如圖3,點B在點A的左側(cè),若∠ABC=60°,則∠BED的度數(shù)為 °.
Ⅱ.如圖4,點B在點A的右側(cè),且AB<CD,AD<BC.若∠ABC=n°,則∠BED的度數(shù)為 °.(用含n的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com