【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

小凱的作法如下:

老師說:“小凱的作法正確.”

請回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是______________________

【答案】對角線互相垂直的平行四邊形是菱形.(或有一組鄰邊相等的平行四邊形是菱形.或四條邊都相等的四邊形是菱形.)

【解析】由作法得EF垂直平分AC、則FA=FC,EA=EC,再證明四邊形AECF為平行四邊形,從而得到四邊形AECF為菱形.

解:答案為對角線互相垂直的平行四邊形是菱形或有一組鄰邊相等的平行四邊形是菱形或四條邊都相等的四邊形是菱形.

“點(diǎn)睛”本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此詞類題目的關(guān)鍵是熟練基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作,也考查了平行四邊形和菱形的判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上,A、B兩點(diǎn)表示的數(shù)a,b滿足|a﹣6|+(b+12)2=0

(1)a=   b=   ;

(2)若小球MA點(diǎn)向負(fù)半軸運(yùn)動(dòng)、小球NB點(diǎn)向正半軸運(yùn)動(dòng),兩球同時(shí)出發(fā),小球M運(yùn)動(dòng)的速度為每秒2個(gè)單位,當(dāng)M運(yùn)動(dòng)到OB的中點(diǎn)時(shí),N點(diǎn)也同時(shí)運(yùn)動(dòng)到OA的中點(diǎn),則小球N的速度是每秒   個(gè)單位;

(3)若小球M、N保持(2)中的速度,分別從A、B兩點(diǎn)同時(shí)出發(fā),經(jīng)過   秒后兩個(gè)小球相距兩個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式:

13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;

13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2

13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;

∴13+23+33+43+53=(______ )2= ______ .

根據(jù)以上規(guī)律填空:

(1)13+23+33+…+n3=(______ )2=[ ______ ]2

(2)猜想:113+123+133+143+153= ______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某月份的日歷表如圖.任意圈出一橫行或一豎列相鄰的三個(gè)數(shù).這三個(gè)數(shù)的和不可能是( 。

A. 24 B. 42 C. 58 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.
(1)∠ACB=°,理由是:;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列多面體,并把下表補(bǔ)充完整.

名稱

三棱柱

四棱柱

五棱柱

六棱柱

圖形

頂點(diǎn)數(shù)

6

10

12

棱數(shù)

9

12

面數(shù)

5

8

觀察上表中的結(jié)果,你能發(fā)現(xiàn)、之間有什么關(guān)系嗎?請寫出關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點(diǎn)在B點(diǎn)的拋物線交x軸于點(diǎn)A、D,交y軸于點(diǎn)E,連接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求拋物線的解析式及頂點(diǎn)B的坐標(biāo);
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標(biāo)軸上是否存在一點(diǎn)P,使以D、E、P為頂點(diǎn)的三角形與△ABE相似,若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(4)設(shè)△AOE沿x軸正方向平移t個(gè)單位長度(0<t≤3)時(shí),△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生對新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖.
請你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛戲曲的有人;在扇形統(tǒng)計(jì)圖中,最喜愛體育的對應(yīng)扇形的圓心角大小是
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛新聞的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y= 相交于A(﹣1,2),B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,求△ABD的面積.

查看答案和解析>>

同步練習(xí)冊答案