【題目】如圖,廣場(chǎng)上一個(gè)立體雕塑由兩部分組成,底座是一個(gè)正方體,正上方是一個(gè)球體,且正方體的高度和球的高度相等.當(dāng)陽(yáng)光與地面的夾角成60°時(shí),整個(gè)雕塑在地面上的影子AB長(zhǎng)2米,求這個(gè)雕塑的高度.(結(jié)果精確到百分位,參考數(shù)據(jù):≈1.73)
【答案】雕塑的高度為4.24米.
【解析】
先過D作DF⊥AB于F,過O作OG⊥AB于G,過O作DF的垂線,交DF于H,交⊙O于E,則AE為⊙O的切線,延長(zhǎng)AE交BD于C,設(shè)⊙O的半徑為r,則OG= 3r=HF=AE,OD=r,根據(jù)∠ACB=30°,∠DOE=30°,得到Rt△ODH中,DH=OD=r,DF=r+3r,進(jìn)而得出CE=CD=AC-AE=2-3r,再根據(jù)AC∥DF,得出,進(jìn)而求得r≈1.06,據(jù)此可得這個(gè)雕塑的高度.
如圖所示,設(shè)D為光線與⊙O的切點(diǎn),過D作DF⊥AB于F,過O作OG⊥AB于G,
過O作DF的垂線,交DF于H,交⊙O于E,
則AE為⊙O的切線,延長(zhǎng)AE交BD于C,
設(shè)⊙O的半徑為r,則OG=3r=HF=AE,OD=r,
∵∠ABD=60°,
∴∠ACB=30°,∠DOE=30°,
∴Rt△ODH中,DH=OD=r,
∴DF=r+3r,
又∵Rt△ABC中,AB=2,
∴AC=2,BC=4,
∴CE=CD=AC﹣AE=2﹣3r,
∵AC∥DF,
∴,即,
解得r≈1.06,
∴雕塑的高度為4r=4×1.06=4.24米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國(guó)學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:.唐詩(shī);.宋詞;.論語(yǔ);.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小紅和小明都沒有抽到“論語(yǔ)”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.
下面有三個(gè)推斷:
①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;
③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,然后回答問題.
①在進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算時(shí),我們有時(shí)會(huì)碰上如一樣的式子,其實(shí)我們還可以將其進(jìn)一步化簡(jiǎn): 以上這種化簡(jiǎn)的步驟叫做分母有理化.
②學(xué)習(xí)數(shù)學(xué),最重要的是學(xué)習(xí)數(shù)學(xué)思想,其中一種數(shù)學(xué)思想叫做換元的思想,它可以簡(jiǎn)化我們的計(jì)算,比如我們熟悉的下面這個(gè)題:已知 ab2,ab 3 ,求 a2 b2 .我們可以把ab和ab看成是一個(gè)整體,令 xab , y ab ,則 a 2 b2 (a b)2 2ab x2 2y 4 610.這樣,我們不用求出a,b,就可以得到最后的結(jié)果.
(1)計(jì)算:
(2)已知 m 是正整數(shù), a ,b 且 2a2 1823ab 2b2 2019 .求 m.
(3)已知,則的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰直角三角形 ABC 中,BAC 90° ,AB AC 6 ,D,E 是線段 BC 上的動(dòng)點(diǎn),且 DAE 45°
(1)如圖 1,請(qǐng)直接寫出 BD,DE,EC 滿足的關(guān)系式為 ,
(2)①如圖 1, CE 3 ,請(qǐng)求出 ADE 的面積(寫出過程);
②如圖 2, EAC 30° ,請(qǐng)求出 CE 的長(zhǎng)度(寫出過程);
(3) 如圖 3,D,E 運(yùn)動(dòng)到了線段的延長(zhǎng)線上,且滿足 DAE 135°,CE=8,直接寫出 BD的長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王和小張利用如圖所示的轉(zhuǎn)盤做游戲,轉(zhuǎn)盤的盤面被分為面積相等的4個(gè)扇形區(qū)域,且分別標(biāo)有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,分別記錄指針停止時(shí)所對(duì)應(yīng)的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:
(1)小王轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤指針停止,對(duì)應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?
(2)該游戲是否公平?請(qǐng)用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】晨光中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x米.
(1)若平行于墻的一邊長(zhǎng)為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍;
(2)設(shè)這個(gè)苗圃園的面積為S,求S與x之間的函數(shù)關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com