x=2
y=-2
是二元一次方程ax+by=3的一個(gè)解,則a-b-1=( 。
A、
3
2
B、1
C、
1
2
D、2
分析:
x=2
y=-2
代入方程ax+by=3,得到一個(gè)關(guān)于a、b的方程,即可進(jìn)一步求出a-b-1的值.
解答:解:由于
x=2
y=-2
是方程ax+by=3的解,代入方程ax+by=3,
可得2a-2b=3,
即a-b=
3
2
,
所以a-b-1=
1
2

故選C.
點(diǎn)評:利用方程的解的定義代入方程,得出一個(gè)相關(guān)式子,求解即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點(diǎn)的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
材料二:根據(jù)圓的定義,圓是到定點(diǎn)的距離等于定長的所有點(diǎn)的集合(其中定點(diǎn)為圓心,定長為半徑).如果把圓放在平面直角坐標(biāo)系中,我們設(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點(diǎn)的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個(gè)二元二次方程我們把它定義為圓的方程.比如:以點(diǎn)(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來表示.事實(shí)上,滿足這個(gè)方程的任意一個(gè)坐標(biāo)(x,y),都在已知圓上.
認(rèn)真閱讀以上兩則材料,回答下列問題:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
為圓心,
9
9
為半徑的圓的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
為圓心,
1
1
為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個(gè)圓的方程,則D,E,F(xiàn)要滿足的條件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圓上的所有點(diǎn)到點(diǎn)(3,4)的最小距離是
3
3
(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若最簡二次根式
x+1x+y-1
3x+2y-5
是同類根式,則x=
1
1
,y=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若最簡二次根式
x-yx+y-1
3x+2y-5
是同類根式,則xy=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點(diǎn)的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
材料二:根據(jù)圓的定義,圓是到定點(diǎn)的距離等于定長的所有點(diǎn)的集合(其中定點(diǎn)為圓心,定長為半徑).如果把圓放在平面直角坐標(biāo)系中,我們設(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點(diǎn)的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個(gè)二元二次方程我們把它定義為圓的方程.比如:以點(diǎn)(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來表示.事實(shí)上,滿足這個(gè)方程的任意一個(gè)坐標(biāo)(x,y),都在已知圓上.
認(rèn)真閱讀以上兩則材料,回答下列問題:
(1)方程(x-7)2+(y-8)2=81表示的是以______為圓心,______為半徑的圓的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以______為圓心,______為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個(gè)圓的方程,則D,E,F(xiàn)要滿足的條件是______.
(3)方程x2+y2=4所表示的圓上的所有點(diǎn)到點(diǎn)(3,4)的最小距離是______(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省中考數(shù)學(xué)模擬試卷(十五)(解析版) 題型:解答題

材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點(diǎn)的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
材料二:根據(jù)圓的定義,圓是到定點(diǎn)的距離等于定長的所有點(diǎn)的集合(其中定點(diǎn)為圓心,定長為半徑).如果把圓放在平面直角坐標(biāo)系中,我們設(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點(diǎn)的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個(gè)二元二次方程我們把它定義為圓的方程.比如:以點(diǎn)(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來表示.事實(shí)上,滿足這個(gè)方程的任意一個(gè)坐標(biāo)(x,y),都在已知圓上.
認(rèn)真閱讀以上兩則材料,回答下列問題:
(1)方程(x-7)2+(y-8)2=81表示的是以______為圓心,______為半徑的圓的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以______為圓心,______為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個(gè)圓的方程,則D,E,F(xiàn)要滿足的條件是______.
(3)方程x2+y2=4所表示的圓上的所有點(diǎn)到點(diǎn)(3,4)的最小距離是______(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案