精英家教網 > 初中數學 > 題目詳情
如圖所示的平面直角坐標系中,有一條拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3).
(1)求二次函數y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到A、C兩點距離之和最。咳舸嬖,求出P點坐標;若不存在,請說明理由.
【答案】分析:(1)由拋物線的對稱軸為x=1,B(3,0),C(0,-3),即可利用待定系數法求得二次函數的解析式;
(2)首先由A與B對稱,連接BC即可確定點P的坐標,然后求得直線BC的解析式,求與x=1的交點即可求得答案.
解答:解:(1)∵拋物線的對稱軸為x=1,B(3,0),C(0,-3),
,
解得:,
∴二次函數y=ax2+bx+c的解析式為:y=x2-2x-3;

(2)存在.
令y=0,即x2-2x-3=0,
解得:x=3或x=-1,
∴點A(-1,0),
∵點A與B關于x=1對稱,
∴連接BC,則直線BC與直線x=1的交點即為P點,
設直線BC的解析式為y=kx+b,
,
解得:
∴直線BC的解析式為y=x-3,
當x=1時,y=1-3=-2,
∴點P的坐標為(1,-2).
點評:此題考查了待定系數法求二次函數的解析式與兩點間距離最短的問題.此題難度適中,解題的關鍵是數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:同步輕松練習 八年級 數學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據表中的數據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數圖象上嗎?如果在某一函數圖象上,求出該函數的解析式,并利用你探求的結果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數學 來源: 題型:022

線段AB,CD在平面直角坐標系中的位置如圖所示,O為坐 標原點.若線段AB上一點P的坐標為(a,b),則直線OP與線段CD的交點坐標為     

查看答案和解析>>

科目:初中數學 來源:2013-2014學年山西省九年級上學期期末考試數學試卷(解析版) 題型:解答題

在平面直角坐標系中,現將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經過點B。

(1)求點B的坐標;

(2)求拋物線的解析式;

(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數學 來源:專項題 題型:填空題

線段AB、CD在平面直角坐標系中的位置如圖所示,O為坐原點,若線段AB上一點P的坐標為(a,b),則直線OP與線段CD的交點的坐標為(    )。

查看答案和解析>>

科目:初中數學 來源: 題型:

線段AB,CD在平面直角坐標系中的位置如圖所示,O為坐    標原點.若線段AB上一點P的坐標為(a,b),則直線OP與線段CD的交點坐標為       .

查看答案和解析>>

同步練習冊答案