(2013年四川綿陽3分)如圖,四邊形ABCD是菱形,對角線AC=8cm,BD=6cm,DH⊥AB于點H,且DH與AC交于G,則GH=【   】
A.cmB.cmC.cmD.cm
B。
∵四邊形ABCD是菱形,對角線AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,
在Rt△AOB中,
BD×AC=AB×DH,∴DH=cm。
在Rt△DHB中,,AH=AB﹣BH=cm。
,∴GH=AH=cm。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市在地鐵施工期間,交管部門在施工路段設(shè)立了矩形路況警示牌BCEF(如圖所示),已知立桿AB的高度是3米,從側(cè)面D點測到路況警示牌頂端C點和底端B點的仰角分別是60°和45°,求路況警示牌寬BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我市某中學(xué)在創(chuàng)建“特色校園”的活動中,將本校的辦學(xué)理念做成宣傳牌(AB),放置在教學(xué)樓的頂部(如圖所示).小明在操場上的點D處,用1米高的測角儀CD,從點C測得宣傳牌的底部B的仰角為37°,然后向教學(xué)樓正方向走了4米到達(dá)點F處,又從點E測得宣傳牌的頂部A的仰角為45°.已知教學(xué)樓高BM=17米,且點A,B,M在同一直線上,求宣傳牌AB的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2013年四川攀枝花4分)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=,BE=4,則tan∠DBE的值是
   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

(2013年四川眉山6分)計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.
(1)求風(fēng)箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

金秋時節(jié),小芳在花雨廣場放風(fēng)箏,已知風(fēng)箏拉線長60米(假設(shè)拉線是直的),且拉線與水平夾角為60°(如圖所示),若小芳的身高忽略不計,則風(fēng)箏離地面的高度是   米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角三角形ABC中,∠C=90°,AC=12,AB=13,則sinB的值等于   

查看答案和解析>>

同步練習(xí)冊答案