已知:拋物線C1y=x2-(m+2)x+
12
m2+2
與C2:y=x2+2mx+n具有下列特征:①都與x軸有交點(diǎn);②與y軸相交于同一點(diǎn).
(1)求m,n的值;
(2)試寫出x為何值時,y1>y2?
(3)試描述拋物線C1通過怎樣的變換得到拋物線C2
分析:(1)由于兩函數(shù)都與x軸有交點(diǎn),可令拋物線C1中,y=0,得出的方程必有△≥0,時,據(jù)此可求出的m的值,由于兩函數(shù)與y軸的交點(diǎn)相同,可先根據(jù)C1求出與y軸的交點(diǎn),然后代入C2中即可求出n的值.
(2)根據(jù)(1)可得出兩函數(shù)的解析式,令y1>y2,可得出一個不等式方程,即可求出x的取值范圍.
(3)將兩函數(shù)化為頂點(diǎn)式,即可得出所求的結(jié)論.
解答:解:(1)由C1知:△=(m+2)2-4×(
1
2
m2+2)=m2+4m+4-2m2-8=-m2+4m-4=-(m-2)2≥0,
∴m=2.
當(dāng)x=0時,y=4.∴當(dāng)x=0時,n=4;

(2)令y1>y2時,x2-4x+4>x2+4x+4,
∴x<0.
∴當(dāng)x<0時,y1>y2

(3)由C1向左平移4個單位長度得到C2
點(diǎn)評:本題主要考查了函數(shù)圖象的交點(diǎn)、二次函數(shù)與一元二次方程的關(guān)系、二次函數(shù)圖象的平移等知識.
根據(jù)已知條件用根的判別式得出m的值進(jìn)而求出兩函數(shù)的解析式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:拋物線C1:y=ax2+bx+c經(jīng)過點(diǎn)A(-1,0)、B (3,0)、C(0,-3).
(1)求拋物線C1的解析式;
(2)將拋物線C1向左平移幾個單位長度,可使所得的拋物線C2經(jīng)過坐標(biāo)原點(diǎn),并寫出C2的解析式;
(3)把拋物線C1繞點(diǎn)A(-1,O)旋轉(zhuǎn)180°,寫出所得拋物線C3頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河池)已知:拋物線C1:y=x2.如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過C1的頂點(diǎn)O和A(2,0),C2的對稱軸分別交C1、C2于點(diǎn)B、D.
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向m個單位下平移(m>0)得拋物線C3,C3的頂點(diǎn)為G,與y軸交于M.點(diǎn)N是M關(guān)于x軸的對稱點(diǎn),點(diǎn)P(-
4
3
m,
1
3
m)在直線MG上.問:當(dāng)m為何值時,在拋物線C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點(diǎn)對稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時以每秒1個單位的速度沿x軸方向分別向左、向右運(yùn)動,此時記A,B,C,D,M,N在某一時刻的新位置分別為A′,B′,C′,D′,M′,N′,當(dāng)點(diǎn)A′與點(diǎn)D′重合時運(yùn)動停止.在運(yùn)動過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時運(yùn)動時間t(秒)的值,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線C1經(jīng)過點(diǎn)
、、
【小題1】   <1>求拋物線C1的解析式;
【小題2】<2>將拋物線C1向左平移幾個單位長度,可使所得的拋物線C2經(jīng)過坐標(biāo)原點(diǎn),計算并寫出C2  的解析式;
【小題3】<3>把拋物線C1繞點(diǎn)A(-1,O)旋轉(zhuǎn)180o,直接寫出所得拋物線C3頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案