【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D是AB的中點(diǎn),點(diǎn)P是直線BC上一點(diǎn),將△BDP沿DP所在的直線翻折后,點(diǎn)B落在B1處,若B1D⊥BC,則點(diǎn)P與點(diǎn)B之間的距離為( 。
A.1B.C.1或 3D.或5
【答案】D
【解析】
分點(diǎn)B1在BC左側(cè),點(diǎn)B1在BC右側(cè)兩種情況討論,由勾股定理可AB=5,由平行線分線段成比例可得,可求BE,DE的長,由勾股定理可求PB的長.
解:如圖,若點(diǎn)B1在BC左側(cè),
∵∠C=90°,AC=3,BC=4,
∴AB=
∵點(diǎn)D是AB的中點(diǎn),
∴BD=BA=
∵B1D⊥BC,∠C=90°
∴B1D∥AC
∴
∴BE=EC=BC=2,DE=AC=
∵折疊
∴B1D=BD=,B1P=BP
∴B1E=B1D-DE=1
∴在Rt△B1PE中,B1P2=B1E2+PE2,
∴BP2=1+(2-BP)2,
∴BP=
如圖,若點(diǎn)B1在BC右側(cè),
∵B1E=DE+B1D=+,
∴B1E=4
在Rt△EB1P中,B1P2=B1E2+EP2,
∴BP2=16+(BP-2)2,
∴BP=5
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點(diǎn),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為.
(1)求拋物線的解析式;
(2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過點(diǎn)D作軸交直線于點(diǎn)E,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)線段的長度最大時(shí),求的最小值;
(3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
若該拋物線經(jīng)過點(diǎn),試求的值及拋物線的頂點(diǎn)坐標(biāo).
求此拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示) ,并證明:不論為何值,該拋物線的頂點(diǎn)都在同一條直線上.
直線截拋物線所得的線段長是否為定值?若是,請求出這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國際油價(jià)隨著供需關(guān)系持續(xù)波動(dòng),特別是主要產(chǎn)油國的日產(chǎn)量會(huì)影響油價(jià)的走勢,某段時(shí)間,某石油輸出大國每天石油的日產(chǎn)量約為1200萬桶時(shí),石油的國際油價(jià)是每桶56美元,每桶成本約為40美元.據(jù)統(tǒng)計(jì),當(dāng)日產(chǎn)量減少50萬桶時(shí),每桶國際油價(jià)將會(huì)提高7美元,但當(dāng)每桶價(jià)格高于100美元時(shí),石油需求量又會(huì)大幅減少,從而嚴(yán)重影響該國的國家經(jīng)濟(jì).
(1)若某段時(shí)間國際石油的價(jià)格是77美元/桶,則該國當(dāng)日的石油日產(chǎn)量是多少萬桶?
(2)該國為了實(shí)現(xiàn)一天的利潤為3.3億美元.則日產(chǎn)量是多少萬桶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的點(diǎn)A,C在⊙O上,⊙O與AB相交于點(diǎn)D,連接CD,∠A=30°,DC=.
(1)求圓心O到弦DC的距離;
(2)若∠ACB+∠ADC=180°,求證:BC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖像交于、,與軸、軸相交于、兩點(diǎn),過點(diǎn)、作軸、軸平行線交于點(diǎn),若,,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)E是BC的中點(diǎn),過點(diǎn)B作BG⊥AE于點(diǎn)G,過點(diǎn)C作CF垂直BG的延長線于點(diǎn)H,交AD于點(diǎn)F
(1)求證:△ABG≌△BCH;
(2)如圖2,連接AH,連接EH并延長交CD于點(diǎn)I;
求證:① AB2=AE·BH;② 求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com