【題目】已知二次函數(shù)的圖像如圖所示,頂點為,有下列結(jié)論:①;②;③;④,其中,正確結(jié)論有________.
【答案】②③④
【解析】
根據(jù)二次函數(shù)的圖象以及頂點坐標,分別找出a、b、c之間的關(guān)系,對照4條結(jié)論判斷其正確與否,由此即可得出結(jié)論.
解:∵拋物線開口向上,
∴a>0,
∵對稱軸在y軸左邊,
∴b>0,
∵拋物線與y軸的交點在x軸的上方,
∴c>2,
∴c>0,
∴abc>0,
∴結(jié)論①不正確;
∵二次函數(shù)y=ax2+bx+c的圖象與x軸只有一個交點,
∴△=0,
即b2-4ac=0,
∴結(jié)論②正確;
∵對稱軸x==-1,
∴b=2a,
∵b2-4ac=0,
∴4a2-4ac=0,
∴a=c,
∵c>2,
∴a>2,
∴結(jié)論③正確;
∵對稱軸是x=-1,而且x=0時,y>2,
∴x=-2時,y>0,
∴4a-2b+c>0,
∴結(jié)論④正確.
綜上,可得
故答案為:②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時,t的值為
A、2 B、2.5或3.5 C、3.5或4.5 D、2或3.5或4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:
對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.
對數(shù)的定義:一般地,若(且),那么叫做以為底的對數(shù),記作,比如指數(shù)式可以轉(zhuǎn)化為對數(shù)式,對數(shù)式,可以轉(zhuǎn)化為指數(shù)式.
我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):
(,,,),理由如下:
設(shè),,則,,
∴,由對數(shù)的定義得
又∵
∴
根據(jù)閱讀材料,解決以下問題:
(1)將指數(shù)式轉(zhuǎn)化為對數(shù)式________;
(2)求證:(,,,)
(3)拓展運用:計算________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2cm的等邊△ABC的邊BC在直線l上,兩條距離為1cm的平行直線a和b垂直于直線l,直線a、b同時向右移動(直線a的起始位置在B點),運動速度為1cm/s,直到直線a到達C點時停止.在a、b向右移動的過程中,記△ABC夾在a和b之間的部分的面積為S,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,半徑為1的圓心角為60°的扇形紙片OAB在直線L上向右做無滑動的滾動.且滾動至扇形O′A′B′處,則頂點O所經(jīng)過的路線總長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家知道烏鴉喝水的故事,如圖,它看到一個水位較低的瓶子,喝不著水,沉思一會后聰明的烏鴉銜來一個個小石子放入瓶中,水位上升后,烏鴉喝到了水.從烏鴉看到瓶子的那刻起開始計時,設(shè)時間變量為,水位高度變量為,下列圖象中最符合故事情景的大致圖象是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請根據(jù)排列規(guī)律完成下列問題:
(1)填寫下表:
圖形序號 | 菱形個數(shù)個 |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根據(jù)表中規(guī)律猜想,圖n中菱形的個數(shù)用含n的式子表示,不用說理;
(3)是否存在一個圖形恰好由91個菱形組成?若存在,求出圖形的序號;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.利用一面墻(墻的長度不限),用20m的籬笆圍成一個矩形場地ABCD.設(shè)矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長;
(3)能圍成S=60m2的矩形嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com