【題目】已知A,B兩地相距120千米,甲乙兩人沿同一條公路勻速行駛,甲騎自行車以20千米/時從A地前往B地,同時乙騎摩托車從B地前往A地,設(shè)兩人之間的距離為s(千米),甲行駛的時間為t(小時),若s與t的函數(shù)關(guān)系如圖所示,則下列說法錯誤的是( 。
A.經(jīng)過2小時兩人相遇
B.若乙行駛的路程是甲的2倍,則t=3
C.當(dāng)乙到達(dá)終點時,甲離終點還有60千米
D.若兩人相距90千米,則t=0.5或t=4.5
【答案】B
【解析】
由圖象得到經(jīng)過2小時兩人相遇,A選項正確,由于乙的速度是=40千米/時,乙的速度是甲的速度的2倍可知B選項錯誤,計算出乙到達(dá)終點時,甲走的路程,可得C選項正確,當(dāng)0<t≤2時,得到t=0.5,當(dāng)3<t≤6時,得到t=4.5,于是得到若兩人相距90千米,則t=0.5或t=4.5,故D正確.
由圖象知:經(jīng)過2小時兩人相遇,A選項正確;
甲的速度是20千米/小時,則乙的速度是=40千米/時,乙的速度是甲的速度的2倍,所以在乙到達(dá)終點之前,乙行駛的路程都是甲的二倍,B選項錯誤;
乙到達(dá)終點時所需時間為=3(小時),3小時甲行駛3×20=60(千米),離終點還有120-60=60(千米),故C選項正確,
當(dāng)0<t≤2時,S=-60t+120,當(dāng)S=90時,即-60t+120=90,解得:t=0.5,
當(dāng)3<t≤6時,S=20t,當(dāng)S=90時,即20t=90,解得:t=4.5,
∴若兩人相距90千米,則t=0.5或t=4.5,故D正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了“全等三角形的對應(yīng)角相等”這一性質(zhì),其全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,直角邊為a、b,斜邊為c.若把關(guān)于x的方程ax2+cx+b=0稱為“勾系一元二次方程”,則這類“勾系一元二次方程”的根的情況是( 。
A. 有兩個不相等的實數(shù)根 B. 有兩個相等的實數(shù)根
C. 沒有實數(shù)根 D. 一定有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班張山同學(xué)利用所學(xué)函數(shù)知識,對函數(shù)y=|x+2|﹣x﹣1進(jìn)行了如下研究:
列表如下:
x | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | ||
Y | 7 | 5 | 3 | m | 1 | n | 1 | 1 | 1 |
描點并連線(如下圖)
(1)求表格中的m、n的值;
(2)在給出的坐標(biāo)系中畫出函數(shù)y=|x+2|﹣x﹣1的圖象;
(3)一次函數(shù)y=﹣x+3的圖象與函數(shù)y=|x+2|﹣x﹣1的圖象交點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年北疆承辦了世界園藝博覽會,某商店為了抓住博覽會的商機(jī),決定購買A.B兩種世園會紀(jì)念品,若購進(jìn)A中紀(jì)念品20件,B種紀(jì)念品10件,需要2000元;若購進(jìn)A中紀(jì)念品8件,B種紀(jì)念品6件,需要1100元.
(1)求購進(jìn)A.B兩種紀(jì)念品每件各需要多少元?
(2)若該商店決定拿出10000元全部用來購進(jìn)這兩種紀(jì)念品,考慮到市場需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種的6倍,且少于B種紀(jì)念品數(shù)量的8倍,設(shè)購進(jìn)B種紀(jì)念品a件,則該商店共有幾種進(jìn)貨方案?
(3)在第(2)問的條件下,若銷售每件A種紀(jì)念品可獲利潤30元,每件B種紀(jì)念品可獲利潤40元,設(shè)總利潤為y元,請寫出總利潤y(元)與a(個)的函數(shù)關(guān)系式,并根據(jù)函數(shù)關(guān)系式說明總利潤最高時的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一座拋物線形拱橋,正常水位時橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標(biāo)系中,求出該拋物線的解析式.
(2)在正常水位的基礎(chǔ)上,當(dāng)水位上升h(m)時,橋 下水面的寬度為d(m),試求出用d表示h的函數(shù)關(guān)系式;
(3)設(shè)正常水位時橋下的水深為2m,為保證過往船只順利航行,橋下水面的寬度不得小于18m,求
水深超過多少米時就會影響過往船只在橋下順利航行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC 中,∠ACB=90°,D 是邊 AB 上的中點,DE 平分∠CDB,且 DE=AC.
(1)求證:CE=AD;
(2)如果AC=BC,求證:四邊形BECD 是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊和等腰,,.
(1)如圖1,點在上,點在上,是的中點,連接,,則線段與之間的數(shù)量關(guān)系為 ;
(2)如圖2,點在內(nèi)部,點在外部,是的中點,連接,,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明,若不成立,請說明理由.
(3)如圖3,若點在內(nèi)部,點和點重合,點在下方,且為定值,當(dāng)最大時,的度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com