若二次函數(shù)y=ax2+bx+1的圖象與平行于x軸的直線交于二點(diǎn)的橫坐標(biāo)分別為m、n.則:當(dāng)x=m+n時(shí),二次函數(shù)y的值是( )
A.1
B.2
C.-1
D.O
【答案】分析:根據(jù)二次函數(shù)的對稱性用m、n表示出二次函數(shù)圖象的對稱軸,再根據(jù)x與y軸關(guān)于拋物線對稱軸對稱可得x=m+n的函數(shù)值與x=0時(shí)的函數(shù)值相等,然后求解即可.
解答:解:∵過橫坐標(biāo)分別為m、n的兩點(diǎn)的直線與x軸平行,
∴m+n=-×2,
=-,
=-,
即x=m+n與x=0關(guān)于對稱軸對稱,
∴x=m+n時(shí),二次函數(shù)y的函數(shù)值與x=0時(shí)的函數(shù)值相等,
當(dāng)x=0時(shí),y=a×02+b×0+1=1,
∴當(dāng)x=m+n時(shí),二次函數(shù)y的值是1.
故選A.
點(diǎn)評:本題主要考查了二次函數(shù)的對稱性,根據(jù)題意用m、n表示出拋物線的對稱軸并判斷出x=m+n時(shí)的函數(shù)值與x=0時(shí)的函數(shù)值相等是解題的關(guān)鍵,此題靈活度較高,是難得的好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(0,-1),(5,-1),則它的對稱軸方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、若二次函數(shù)y=ax2+2x+c的值總是負(fù)值,則
a<0,ac>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•河北區(qū)模擬)若二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個(gè)不同的交點(diǎn)A(1,0)、B(-3,0),與y軸的負(fù)半軸交于點(diǎn)C,且S△ABC=6.
(Ⅰ)求該二次函數(shù)的解析式和頂點(diǎn)P的坐標(biāo);
(Ⅱ)經(jīng)過A、B、P三點(diǎn)畫⊙O′,求⊙O′的面積;
(Ⅲ)設(shè)拋物線上有一動(dòng)點(diǎn)M(a,b),連AM,BM,試判斷△ABM能否是直角三角形?若能,求出M點(diǎn)的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)若二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則直線y=bx-c不經(jīng)過( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)O為坐標(biāo)原點(diǎn),∠AOB=30°,∠B=90°,且點(diǎn)A的坐標(biāo)為(2,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A,B,O三點(diǎn),求此二次函數(shù)的解析式;
(3)在(2)中的二次函數(shù)圖象的OB段(不包括O,B點(diǎn))上,是否存在一點(diǎn)C,使得四邊形ABCO的面積最大?若存在,求出點(diǎn)C的坐標(biāo)及四邊形ABCO的最大面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案