如圖,已知:在△ABC中,D為BC邊上一點(diǎn),AB=AC=CD,BD=AD,求△ABC各角的度數(shù).
分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,從而可推出∠BAC=3∠DBA,根據(jù)三角形的內(nèi)角和定理即可求得∠DBA的度數(shù),從而不難求得各個內(nèi)角的度數(shù).
解答:解:∵AD=BD
∴設(shè)∠BAD=∠DBA=x°,
∵AB=AC=CD
∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,
∴∠BAC=3∠DBA=3x°,
∵∠ABC+∠BAC+∠C=180°
∴5x=180°,
∴∠DBA=36°
∴∠BAC=3∠DBA=108°,∠B=∠C=36°.
點(diǎn)評:此題主要考查學(xué)生對等腰三角形的性質(zhì)及三角形內(nèi)角和定理的綜合運(yùn)用能力;求得角之間的關(guān)系利用內(nèi)角和求解是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:在Rt△ABC中,∠C=90°,E為AB的中點(diǎn),且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M在AB上,BC=BD,MC=MD.請說明:AC=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖,已知M在AB上,BC=BD,MC=MD,請說明:AC=AD。

查看答案和解析>>

同步練習(xí)冊答案