【題目】下列全國各地地鐵標志圖中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

【答案】C
【解析】解:A、不是軸對稱圖形,也不是中心對稱圖形.故錯誤;

B、不是軸對稱圖形,是中心對稱圖形.故錯誤;

C、是軸對稱圖形,也是中心對稱圖形.故正確;

D、是軸對稱圖形,不是中心對稱圖形.故錯誤.

所以答案是:C.

【考點精析】利用軸對稱圖形和中心對稱及中心對稱圖形對題目進行判斷即可得到答案,需要熟知兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一樓房AB后有一假山,山坡斜面CD與水平面夾角為30°,坡面上點E處有一亭子,測得假山坡腳C與樓房水平距離BC=10米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.求樓房AB的高(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】原題呈現(xiàn):若a2+b2+4a2b+50,求a、b的值.

方法介紹:

①看到a2+4a可想到如果添上常數(shù)4恰好就是a2+4a+4=(a+22,這個過程叫做配方,同理b22b+1=(b12,恰好把常數(shù)5分配完;

②從而原式可以化為(a+22+b120由平方的非負性可得a+20b10

經(jīng)驗運用:

1)若4a2+b220a+6b+340,求a+b的值.

2)若a2+5b2+c22ab4b+6c+100,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式從左到右的變形,是因式分解的是()

A.x2-9+6x=x+3)(x-3+6xB.x+5)(x-2=x2+3x-10

C.x2-8x+16=x-42D.x21xx

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx的一次函數(shù),當x1時,y1;當x=-2時,y=-14.

(1)求這個一次函數(shù)的關(guān)系式;

(2)在如圖所示的平面直角坐標系中作出函數(shù)的圖像;

(3)由圖像觀察,當0x2時,函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】智能折疊電動車是在傳統(tǒng)電動車的基礎上,根據(jù)消費者需求生產(chǎn)的一種新型電動車.某智能折疊電動車公司計劃每周生產(chǎn)1400輛,平均每天生產(chǎn)200輛.由于各種原因?qū)嶋H每天生產(chǎn)量與計劃每天生產(chǎn)量相比有出入.下表是某周智能折疊電動車生產(chǎn)情況(超計劃生產(chǎn)量為正、不足計劃生產(chǎn)量為負,單位:輛)

星期

生產(chǎn)情況

(1)根據(jù)記錄可知前三天共生產(chǎn)智能折疊電動車_______輛;

(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;

(3)若該公司實行按生產(chǎn)的智能折疊電動車數(shù)量的多少計工資,即計件工資制.如果每生產(chǎn)一輛智能折疊電動車可得人民幣60元,那么該公司工人這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩組同學玩“兩人背夾球”比賽,即:每組兩名同學用背部夾著球跑完規(guī)定的路程,若途中球掉下時須撿起并回到掉球處繼續(xù)賽跑,用時少者勝.結(jié)果:甲組兩位同學掉了球;乙組兩位同學順利跑完.設比賽中同學距出發(fā)點的距離用y表示,單位是米;比賽時間用x表示,單位是秒.兩組同學比賽過程用圖像表示如下:

(1)這是一次 米的背夾球比賽;

(2)線段 表示甲組兩位同學在比賽中途掉球,耽誤了 秒;

(3)甲組同學到達終點用了 秒,乙組同學到達終點用了 秒,獲勝的是 組同學;

(4)請直接寫出C點坐標,并說明點C的實際意義.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某公司租用兩種型號的貨車各一輛,分別將產(chǎn)品運往甲市與乙市(運費收費標準如下表),已知該公司到乙市的距離比到甲市的距離遠30km,B車的總運費比A車的總運費少1080元.

1)求這家公司分別到甲、乙兩市的距離;

2)若A,B兩車同時從公司出發(fā),其中B車以60km/h的速度勻速駛向乙市,而A車根據(jù)路況需要,先以45kmh的速度行駛了3小吋,再以75km/h的速度行駒到達甲市.

①在行駛的途中,經(jīng)過多少時間,A,B兩車到各自目的地的距離正好相等?

②若公司希望B車能與A車同吋到達目的地,B車必須在以60km/h的速度行駛一段時間后提速,若提速后的速度為70km/h(速度從60km/h提速到70km/h的時間忽略不汁),則B車應該在行駛    小時后提速.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小宇想測量位于池塘兩端的A,B兩點的距離.他沿著與直線AB平行的道路EF行走,當行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A,B兩點的距離.

查看答案和解析>>

同步練習冊答案