如圖,已知Rt△ABC中,∠C=90°,AC=8,BC=6.現(xiàn)將其沿BD直線折疊,使點(diǎn)C落在AB邊上,則CD的長為


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
A
分析:由Rt△ABC中,∠C=90°,AC=8,BC=6,利用勾股定理即可求得AB的長,又由折疊的性質(zhì)即可求得AC′的長,然后設(shè)CD=x,在Rt△AC′D中,AC′2+C′D2=AD2,可得方程:42+x2=(8-x)2,解此方程即可求得答案.
解答:∵Rt△ABC中,∠C=90°,AC=8,BC=6,
∴AB==10,
由折疊的性質(zhì)可得:BC′=BC=6,C′D=CD,∠BC′D=∠C=90°,
∴AC′=AB-BC′=4,∠AC′D=90°,
設(shè)CD=x,則C′D=x,AD=AC-CD=8-x,
在Rt△AC′D中,AC′2+C′D2=AD2,
即42+x2=(8-x)2,
解得:x=3,
∴CD=3.
故選A.
點(diǎn)評:此題考查了折疊的性質(zhì)以及勾股定理.此題難度適中,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形.那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個(gè)圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點(diǎn),PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長;
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個(gè)單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊答案