如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動點P從A點開始沿AD邊向D以3cm/s的速度運動,動點Q從點C開始沿CB邊向點B以1cm/s的速度運動,點P、Q分別從A、C同時出發(fā),設(shè)運動時間為t (s).
⑴當(dāng)其中一點到達端點時,另一點也隨之停止運動.
①當(dāng)t為何值時,以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個三角形;②當(dāng)t為何值時,四邊形PQCD為等腰梯形.
⑵若點P從點A開始沿射線AD運動,當(dāng)點Q到達點B時,點P也隨之停止運動.當(dāng)t為何值時,以P、Q、C、D為頂點的四邊形是平行四邊形.
(1)①t=0s或t=8s時;②t=7s;(2)t=6s或t=12s時.
解析試題分析:(1)①能組成三角形,則需要有三條邊,可得當(dāng)點P與點A重合時與點P與點D重合時兩種情況可組成三角形,求解即可得到t的值;
②由BC-CD=2cm,可知當(dāng)CQ-PD=4cm時,四邊形PQCD為等腰梯形,列方程求解即可;
(2)根據(jù)題意可知:當(dāng)P在線段AD上,則當(dāng)PD=CQ時,四邊形PQCD為平行四邊形,P在線段AD的延長線上,則當(dāng)PD=CQ時,四邊形DQCP為平行四邊形,所以列方程求解即可.
(1)①根據(jù)題意得:
當(dāng)點P與點A重合時能構(gòu)成一個三角形,此時t=0,
∵點P到達D點需:8(s),
點Q到達B點需:26(s),
∴當(dāng)點P與點D重合時能構(gòu)成一個三角形,此時t=8s;
故當(dāng)t=0或8s時,以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個三角形;
②∵BC-AD=2cm,
過點P作PF⊥BC于點F,過點D作DE⊥BC于點E,
∵當(dāng)PQ=CD時,四邊形PQCD為等腰梯形,
∴△PFQ≌△DCE,EF=PD,
∴QF=CE=2cm,
∴當(dāng)CQ-PD=QF+CE=4cm時,四邊形PQCD為等腰梯形,
∴t-(24-3t)=4,
∴t=7(s),
∴當(dāng)t=7s時,四邊形PQCD為等腰梯形;
(2)如果P在線段AD上,則當(dāng)PD=CQ四邊形PQCD為平行四邊形,
∴24-3t=t,
解得:t=6(s),
∴當(dāng)t=6s時,四邊形PQCD為平行四邊形;
如果P在線段AD的延長線上,
則當(dāng)PD=CQ時,四邊形DQCP為平行四邊形,
即3t-24=t,
解得:t=12(s),
∴當(dāng)t=6或12s時,以P、Q、C、D為頂點的四邊形是平行四邊形.
考點:本題考查了等腰梯形的判定與性質(zhì),平行四邊形的判定與性質(zhì)
點評:解答本題的關(guān)鍵是解題時需要仔細識圖,注意合理應(yīng)用數(shù)形結(jié)合思想.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com