【題目】列等式:x的2倍與10的和等于18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DE∥AB.請(qǐng)根據(jù)已知條件進(jìn)行推理,分別得出結(jié)論,并在括號(hào)內(nèi)注明理由.
(1)∵DE∥AB,( 已知 )
∴∠2= . ( , )
(2)∵DE∥AB,(已知 )
∴∠3= .( , )
(3)∵DE∥AB(已知 ),
∴∠1+ =180°.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
填空:
①∠AEB的度數(shù)為___________;
②線段AD,BE之間的數(shù)量關(guān)系為___________.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)A到BP的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為1cm,若點(diǎn)P到圓心O的距離為0.5 cm,則點(diǎn)P與⊙O的位置關(guān)系是( )
A. 點(diǎn)P在⊙O外 B. 點(diǎn)P在⊙O上 C. 點(diǎn)P在⊙O內(nèi) D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5.
①求證:AF⊥BD,
②求AF的長(zhǎng)度;
(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí).求證:AF⊥BD;
(3)如圖3,在(2)的條件下,連接CF并延長(zhǎng)CF交AD于點(diǎn)G,∠AFG是一個(gè)固定的值嗎?若是,求出∠AFG的度數(shù),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】碼頭工人每天往一艘輪船上裝載貨物,裝載速度y(噸/天)與裝完貨物所需時(shí)間x(天)之間的函數(shù)關(guān)系如圖.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,裝載完畢恰好用了8天時(shí)間,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com