【題目】如圖,⊙O是△ABC的外接圓, AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=EAC.

(1)求證:AE是⊙O的切線;

(2)過點CCGAD,垂足為F,與AB交于點G,若AGAB=36,tanB=,求DF的值

【答案】(1)見解析;(2)4

【解析】分析:(1)欲證明AE是⊙O切線,只要證明OAAE即可;

(2)由ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.

詳解:(1)證明:連接CD.

∵∠B=D,AD是直徑,

∴∠ACD=90°,D+1=90°,B+1=90°,

∵∠B=EAC,

∴∠EAC+1=90°,

OAAE,

AE是⊙O的切線.

(2)CGAD.OAAE,

CGAE,

∴∠2=3,

∵∠2=B,

∴∠3=B,

∵∠CAG=CAB,

∴△ABC∽△ACG,

,

AC2=AGAB=36,

AC=6,

tanD=tanB=,

RtACD中,tanD==

CD==6,AD==6,

∵∠D=D,ACD=CFD=90°,

∴△ACD∽△CFD,

,

DF=4,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達A村,繼續(xù)向南騎行3 km到達B村,然后向北騎行9 km到達C村,最后回到郵局.

(1)以郵局為原點,以向北為正方向,用0.5 cm表示1 km,畫出數(shù)軸,并在該數(shù)軸上表示出A,B,C三個村莊的位置.

(2)C村離A村有多遠?

(3)郵遞員一共騎了多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣2a23+2a2a4a8÷a2

2)﹣12018﹣(2+(﹣30

32aab)(a+2b

4)(﹣3m+2n)(﹣2n3m)(9m24n2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為組織代表隊參加市拜炎帝、誦經(jīng)典吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x80B組:80≤x85;C組:85≤x90;D組:90≤x95;E組:95≤x100.并繪制出如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

1)參加初賽的選手共有 名,請補全頻數(shù)分布直方圖;

2)扇形統(tǒng)計圖中,C組對應(yīng)的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?

3)學校準備組成8人的代表隊參加市級決賽,E6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的單位正方形網(wǎng)格中,ABC經(jīng)過平移后得到A1B1C1,已知在AC上一點P(2.4,2)平移后的對應(yīng)點為P1,點P1繞點O逆時針旋轉(zhuǎn)180°,得到對應(yīng)點P2,則P2點的坐標為

A.(1.4,-1) B.(1.5,2) C.(1.6,1) D.(2.4,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學問題:用邊長相等的正三角形、正方形和正六邊形能否進行平面圖形的鑲嵌?

問題探究:為了解決上述數(shù)學問題,我們采用分類討論的思想方法去進行探究.

探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進行平面圖形的鑲嵌?

第一類:選正三角形.因為正三角形的每一個內(nèi)角是60°,所以在鑲嵌平面時,圍繞某一點有6個正三角形的內(nèi)角可以拼成一個周角,所以用正三角形可以進行平面圖形的鑲嵌.

第二類:選正方形.因為正方形的每一個內(nèi)角是90°,所以在鑲嵌平面時,圍繞某一點有4個正方形的內(nèi)角可以拼成一個周角,所以用正方形也可以進行平面圖形的鑲嵌.

第三類:選正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)

探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進行平面圖形的鑲嵌?

第四類:選正三角形和正方形

在鑲嵌平面時,設(shè)圍繞某一點有x個正三角形和y個正方形的內(nèi)角可以拼成個周角.根據(jù)題意,可得方程

60x+90y360

整理,得2x+3y12

我們可以找到唯一組適合方程的正整數(shù)解為.

鑲嵌平面時,在一個頂點周圍圍繞著3個正三角形和2個正方形的內(nèi)角可以拼成一個周角,所以用正三角形和正方形可以進行平面鑲嵌

第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)

第六類:選正方形和正六邊形,(不寫探究過程,只寫出結(jié)論)

探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?

第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結(jié)論),

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當△BDM為直角三角形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天一個巡警騎摩托車在一條南北大道上巡邏,他從崗亭出發(fā),規(guī)定崗亭為原點,向北為正,這段時間行駛記錄如下(單位:千米) +10,-9,+7-15,+6,-14,+4,-2

1最后停留的地方在崗亭的哪個方向?距離崗亭多遠?

2)若摩托車行駛,每千米耗油0.06升,每升6.2元,且最后返回崗亭,這一天耗油共需多少元?

查看答案和解析>>

同步練習冊答案