【題目】如圖,四邊形ABCD是矩形紙片,對折矩形紙片ABCD,使AD與BC重合折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點有如下結(jié)論:;是等邊三角形;;為線段BM上一動點,H是BN的中點,則的最小值是其中正確結(jié)論的個數(shù)是
A. 1個 B. 2個 C. 3個 D. 4個
【答案】B
【解析】
首先根據(jù)EF垂直平分AB,可得;然后根據(jù)折疊的性質(zhì),可得,據(jù)此判斷出為等邊三角形,即可判斷出求出;然后在中,根據(jù),求出AM的大小即可.
根據(jù)對折得,再由平行線的性質(zhì)和三角形的內(nèi)角和定理得:,即可推得是等邊三角形.
根據(jù)平行線等分線段定理得:,,得QN是的中位線,可得QN的長;
首先根據(jù)是等邊三角形,點N是MG的中點,判斷出,即可求出BN的大;然后根據(jù)E點和H點關(guān)于BM稱可得,因此P與Q重合時,,據(jù)此求出的最小值是多少即可.
如圖1,連接AN,交BM于P,
垂直平分AB,
,
根據(jù)折疊的性質(zhì),可得,
.
為等邊三角形.
,
,
,
故不正確;
,
,
,
,
為等邊三角形,
故正確;
由知:為等邊三角形,
,
,,
,,
是的中位線,
,
故不正確.
是等邊三角形,點N是MG的中點,
,
,
根據(jù)條件易知E點和H點關(guān)于BM對稱,
,
與Q重合時,的值最小,此時,如圖2,
,
的最小值是,
故正確.
本題結(jié)論正確的有:,2個,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展課外社團活動,決定開設(shè)A:籃球,B:乒乓球,C:羽毛球,D:棋類四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種),隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡A項目的人數(shù)所占的百分比為________,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是________度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學(xué)生1000人,請根據(jù)樣本估計全校最喜歡乒乓球的學(xué)生人數(shù)約是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形 ABC (頂點是網(wǎng)格線交點的三角形)的頂點 A ,C 的坐標(biāo)分別是(-4 ,6) ,(-1,4) .
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出△ABC 關(guān)于 x 軸對稱的△A1B1C1 ;并直接寫出A1B1C1的坐標(biāo).
(3)請在 y 軸上求作一點 P ,使△PB1C 的周長最小,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔B的正西方向A處,且A處與燈塔B相距60海里,輪船沿東北方向勻速航行,到達位于燈塔B的北偏東l5°方向上的C處.
(1)求∠ACB的度數(shù);
(2)求燈塔B到C處的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點,現(xiàn)有經(jīng)過點A的直線l:y=kx+b1與y軸交于點C,與拋物線的另個交點為D.
(1)求拋物線的函數(shù)表達式;
(2)若點D在第二象限且滿足CD=5AC,求此時直線1的解析式;在此條件下,點E為直線1下方拋物線上的一點,求△ACE面積的最大值,并求出此時點E的坐標(biāo);
(3)如圖,設(shè)P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點Q在拋物線上,若以點A,D,P,Q為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點Q的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,分別以AC,BC為邊長,在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,則EF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(2x﹣1)(﹣1﹣2x);
(2)x(x﹣1)﹣(x+1)(x﹣2);
(3);
(4);
(5)(2m﹣n)2+(﹣2m﹣n)2;
(6)(m2﹣mn+n2)(m2+mn+n2);
(7)(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab;
(8)(2x﹣3y)6×(3y﹣2x)3÷(2x﹣3y)7.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com