【題目】如圖,將△ABC的邊AB繞著點A順時針旋轉()得到AB′,邊AC繞著點A逆時針旋轉()得到AC′,聯(lián)結B′C′,當+=60°時,我們稱AB′C′是ABC的“雙旋三角形”,如果等邊ABC的邊長為a, 那么它所得的“雙旋三角形”中B′C′=___________(用含a的代數(shù)式表示).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F、H分別是AB、BC、CD的中點,CE、DF交于G,連接AG、HG.下列結論:①CE⊥DF;②AG=DG;③∠CHG=∠DAG;④2HG=AD.正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應點C、D.連接AC,BD
(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;
(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點(可以與O、B重合),點F為射線DC上一點,若∠ABC=60,∠AEF=120,AB=5,則EF的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是,,,先將向上平移3個單位長度,再向右平移2個單位長度,得到.
(1)在圖中畫出;
(2)點,的坐標分別為______、______;
(3)若軸有一點,使與面積相等,求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).
(1)點C的坐標是 ;
(2)將△ABC沿x軸正方向平移得到△A′ B′C′,且B,C兩點的對應點B′,C′恰好落在反比例函數(shù)的圖象上,求該反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】媒體報道,近期“手足口病”可能進入發(fā)病高峰期,某校根據(jù)《學校衛(wèi)生工作條例》,為預防“手足口病”,對教室進行“薰藥消毒”.已知藥物在燃燒及釋放過程中,室內(nèi)空氣中每立方米含藥量y(毫克)與燃燒時間x(分鐘)之間的關系如圖所
示(即圖中線段OA和雙曲線在A點及其右側的部分),根據(jù)圖象所示信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的函數(shù)關系式及自變量的取值范圍;
(2)據(jù)測定,當空氣中每立方米的含藥量低于2毫克時,對人體無毒害作用,那么從消毒開始,至少在多長時間內(nèi),師生不能進入教室?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列敘述正確的是( )
A. “如果a,b是實數(shù),那么a+b=b+a”是不確定事件
B. “某班50位同學中恰有2位同學生日是同一天”是隨機事件
C. 為了了解一批炮彈的殺傷力,采用普查的調(diào)查方式比較合適
D. 某種彩票的中獎概率為,是指買7張彩票一定有一張中獎
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com