如圖,在平面直角坐標(biāo)系中,直線y=-2x+12與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求△OAC的面積;
(3)若P為線段OA(不含O、A兩點(diǎn))上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD∥AB交直線OC于點(diǎn)D,連接PC.設(shè)OP=t,△PDC的面積為S,求S與t之間的函數(shù)關(guān)系式;S是否存在最大值?如果存在,請(qǐng)求出來;如果不存在,請(qǐng)簡要說明理由.

解:(1)∵直線y=-2x+12與直線y=x交于點(diǎn)C,
∴x=-2x+12,
解得x=4,

所以y=4,所以C點(diǎn)的坐標(biāo)為(4,4).

(2)由-2x+12=0得x=6,
所以S△OAC=×6×4=12.

(3)如圖,分別過點(diǎn)C、D作OA的垂線,垂足分別為M、N點(diǎn),
因?yàn)镻D∥AC,所以,
=,所以DN=t.
所以S=S△OAC-S△OPD-S△PAC
=12-OP•DN-PA•CM=12-t•t-(6-t)•4=-t2+2t=-(t-3)2+3.
當(dāng)t=3時(shí),S有最大值,最大值為3.
分析:(1)因?yàn)橹本y=-2x+12與直線y=x交于點(diǎn)C,所以令x=y,即可得到x=-2x+12,解之即可求出點(diǎn)A的坐標(biāo);
(2)因?yàn)橹本y=-2x+12與x軸交于點(diǎn)A,所以令y=0,即可求出A的坐標(biāo),也可求出OA的值,利用S△OAC=×OA×4即可求出三角形的面積;
(3)可分別過點(diǎn)C、D作OA的垂線,設(shè)垂足分別為M、N點(diǎn),因?yàn)镻D∥AC,所以,即=,所以DN=t,又因S=S△OAC-S△OPD-S△PAC,將有關(guān)數(shù)據(jù)代入即可求得S與t之間的函數(shù)關(guān)系式,利用所求的二次函數(shù)解析式,結(jié)合t的取值即可得到當(dāng)t=3時(shí),S有最大值,最大值為3.
點(diǎn)評(píng):本題主要考查了利用待定系數(shù)法求函數(shù)解析式和利用函數(shù)求最值的問題,而解決這類問題常用到分類討論、數(shù)形結(jié)合、方程和轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案