如圖,分別以Rt△ABC的三邊為邊向外作三個正方形,其面積分別用S1、S2、S3表示,請寫出S1、S2、S3之間的關(guān)系,并說明理由.
分析:先設(shè)Rt△ABC的三邊分別為a、b、c,再分別用abc表示S1、S2、S3的值,由勾股定理即可得出S3的值.
解答:解:S1+S2=S3,理由如下:
∵如圖,分別以Rt△ABC的三邊為邊向外作三個正方形,
∴S3=c2,S2=a2,S1=b2,…(8分)
又∵△ABC是直角三角形,
∴a2+b2=c2
∴S1+S2=S3
點評:本題考查的是勾股定理的應(yīng)用及正方形的面積公式,熟知勾股定理是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,DE,AB相交于點G,若∠BAC=30°,下列結(jié)論:①EF⊥AC;②四邊形ADFE為平行四邊形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,分別以Rt△ABC三邊為直徑向外作三個半圓,其面積分別用S1,S2,S3表示,則不難證明S1=S2+S3
(1)如圖②,分別以Rt△ABC三邊為邊向外作三個正方形,其面積分別用S1,S2,S3表示,寫出它們的關(guān)系;(不必證明)
(2)如圖③,分別以Rt△ABC三邊為邊向外作正三角形,其面積分別用S1,S2,S3表示,確定它們的關(guān)系并證明;
(3)若分別以Rt△ABC三邊為邊向外作三個一般三角形,其面積分別用S1,S2,S3表示,為使S1,S2,S3之間仍具有與(2)相同的關(guān)系,所作三角形應(yīng)滿足什么條件?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,連接DF、EF、DE,EF與AC交于點O,DE與AB交于點G,連接OG,若∠BAC=30°,下列結(jié)論:
①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.
其中正確結(jié)論的序號是( 。
A、①②③B、①④⑤C、①③⑤D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB中點,連接DF、EF,DE、EF與AC交于點O,DE與AB交于點G,連接OG,若∠BAC=30°,下列結(jié)論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.其中正確的結(jié)論的序號是
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,分別以Rt△ABC三邊為邊向外作三個正方形,其面積分別用S1、S2、S3表示,容易得出S1、S2、S3之間有的關(guān)系式
S1=S2+S3
S1=S2+S3

查看答案和解析>>

同步練習(xí)冊答案